Suppr超能文献

一种结合深度特征注意力和统计验证的新型混合深度学习方法,用于增强甲状腺超声图像分割。

A novel hybrid deep learning approach combining deep feature attention and statistical validation for enhanced thyroid ultrasound segmentation.

作者信息

Banerjee Tathagat, Singh Davinder Paul, Swain Debabrata, Mahajan Shubham, Kadry Seifedine, Kim Jungeun

机构信息

Department of Computer Science and Engineering, IIT Patna, Patna, India.

Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.

出版信息

Sci Rep. 2025 Jul 26;15(1):27207. doi: 10.1038/s41598-025-12602-6.

Abstract

An effective diagnosis system and suitable treatment planning require the precise segmentation of thyroid nodules in ultrasound imaging. The advancement of imaging technologies has not resolved traditional imaging challenges, which include noise issues, limited contrast, and dependency on operator choices, thus highlighting the need for automated, reliable solutions. The researchers developed TATHA, an innovative deep learning architecture dedicated to improving thyroid ultrasound image segmentation accuracy. The model is evaluated using the digital database of thyroid ultrasound images, which includes 99 cases across three subsets containing 134 labelled images for training, validation, and testing. It incorporates data pre-treatment procedures that reduce speckle noise and enhance contrast, while edge detection provides high-quality input for segmentation. TATHA outperforms U-Net, PSPNet, and Vision Transformers across various datasets and cross-validation folds, achieving superior Dice scores, accuracy, and AUC results. The distributed thyroid segmentation framework generates reliable predictions by combining results from multiple feature extraction units. The findings confirm that these advancements make TATHA an essential tool for clinicians and researchers in thyroid imaging and clinical applications.

摘要

一个有效的诊断系统和合适的治疗方案需要在超声成像中对甲状腺结节进行精确分割。成像技术的进步并未解决传统成像面临的挑战,这些挑战包括噪声问题、对比度有限以及对操作员选择的依赖性,因此凸显了对自动化、可靠解决方案的需求。研究人员开发了TATHA,这是一种创新的深度学习架构,致力于提高甲状腺超声图像分割的准确性。该模型使用甲状腺超声图像数字数据库进行评估,该数据库包括三个子集的99个病例,包含134张用于训练、验证和测试的标记图像。它纳入了减少斑点噪声和增强对比度的数据预处理程序,同时边缘检测为分割提供高质量的输入。在各种数据集和交叉验证折叠中,TATHA的表现优于U-Net、PSPNet和视觉Transformer,实现了更高的Dice分数、准确率和AUC结果。分布式甲状腺分割框架通过组合多个特征提取单元的结果生成可靠的预测。研究结果证实,这些进展使TATHA成为甲状腺成像和临床应用中临床医生和研究人员的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e227/12297392/dfb2a8e1fc34/41598_2025_12602_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验