Zhu Licheng, Wei Guohui
College of Medical Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Jun 25;42(3):567-574. doi: 10.7507/1001-5515.202412009.
To address the high computational complexity of the Transformer in the segmentation of ultrasound thyroid nodules and the loss of image details or omission of key spatial information caused by traditional image sampling techniques when dealing with high-resolution, complex texture or uneven density two-dimensional ultrasound images, this paper proposes a thyroid nodule segmentation method that integrates the receiving weighted key-value (RWKV) architecture and spherical geometry feature (SGF) sampling technology. This method effectively captures the details of adjacent regions through two-dimensional offset prediction and pixel-level sampling position adjustment, achieving precise segmentation. Additionally, this study introduces a patch attention module (PAM) to optimize the decoder feature map using a regional cross-attention mechanism, enabling it to focus more precisely on the high-resolution features of the encoder. Experiments on the thyroid nodule segmentation dataset (TN3K) and the digital database for thyroid images (DDTI) show that the proposed method achieves dice similarity coefficients (DSC) of 87.24% and 80.79% respectively, outperforming existing models while maintaining a lower computational complexity. This approach may provide an efficient solution for the precise segmentation of thyroid nodules.
为了解决Transformer在超声甲状腺结节分割中计算复杂度高的问题,以及传统图像采样技术在处理高分辨率、复杂纹理或密度不均匀的二维超声图像时导致的图像细节丢失或关键空间信息遗漏的问题,本文提出了一种将接收加权键值(RWKV)架构与球面几何特征(SGF)采样技术相结合的甲状腺结节分割方法。该方法通过二维偏移预测和像素级采样位置调整有效地捕捉相邻区域的细节,实现精确分割。此外,本研究引入了一个补丁注意力模块(PAM),使用区域交叉注意力机制优化解码器特征图,使其能够更精确地聚焦于编码器的高分辨率特征。在甲状腺结节分割数据集(TN3K)和甲状腺图像数字数据库(DDTI)上的实验表明,所提出的方法分别实现了87.24%和80.79%的骰子相似系数(DSC),在保持较低计算复杂度的同时优于现有模型。这种方法可能为甲状腺结节的精确分割提供一种有效的解决方案。