Suppr超能文献

黑曲霉FS054产果糖基转移酶发酵工艺的优化。

Optimization of the fermentation process for fructosyltransferase production by Aspergillus niger FS054.

作者信息

Wu Yingzi, Zhang Yuewen, Zhong Xiaoyu, Xia Huiling, Zhou Mingyang, He Wenjin, Zheng Yi

机构信息

College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.

National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fuzhou, Fujian, China.

出版信息

Microb Cell Fact. 2025 Jul 27;24(1):173. doi: 10.1186/s12934-025-02798-7.

Abstract

This study systematically optimized the fermentation process for fructosyltransferase (FTase) production by Aspergillus niger FS054, integrating traditional experimental designs with machine learning approaches. Single-factor experiments initially identified critical medium components (carbon source, nitrogen sources, phosphate, and metal ions) and cultivation parameters (pH, liquid volume, inoculum size, temperature, and shaking speed). Subsequent Plackett-Burman screening identified sucrose, yeast extract paste, and as the most influential medium factors. Through Box-Behnken response surface methodology (RSM), the optimal medium composition was determined as sucrose 156.65 g/L, yeast extract paste 42 g/L, and 1.68 g/L, yielding an enzyme activity of 3249.00 ± 24.39 U/L (99.16% agreement with RSM predictions). Further optimization of cultivation conditions using a hybrid backpropagation neural network-genetic algorithm (BP-GA) model identified optimal parameters as pH 5.5, a liquid volume of 96.6 mL (in a 250 mL shaker), and inoculum size of 2.4 spores/mL, achieving a final enzyme activity of 3422.14 ± 36.86 U/L (1.1% deviation from the predicted 3460 U/L), representing a 4.2-fold increase over initial conditions. This work demonstrates the synergistic application of classical experimental design and artificial intelligence, significantly enhancing FTase productivity and potentially offering a more economical enzyme source for industrial-scale fructooligosaccharide (FOS) biosynthesis.

摘要

本研究将传统实验设计与机器学习方法相结合,系统地优化了黑曲霉FS054生产果糖基转移酶(FTase)的发酵过程。单因素实验首先确定了关键培养基成分(碳源、氮源、磷酸盐和金属离子)和培养参数(pH值、液体体积、接种量、温度和振荡速度)。随后的Plackett-Burman筛选确定蔗糖、酵母提取物膏和 为最具影响力的培养基因素。通过Box-Behnken响应面法(RSM),确定最佳培养基组成为蔗糖156.65 g/L、酵母提取物膏42 g/L和 1.68 g/L,酶活性为3249.00±24.39 U/L(与RSM预测值的吻合度为99.16%)。使用混合反向传播神经网络-遗传算法(BP-GA)模型进一步优化培养条件,确定最佳参数为pH 5.5、液体体积96.6 mL(在250 mL摇瓶中)和接种量2.4 个孢子/mL,最终酶活性达到3422.14±36.86 U/L(与预测的3460 U/L偏差1.1%),比初始条件提高了4.2倍。这项工作展示了经典实验设计与人工智能的协同应用,显著提高了FTase的生产力,并有可能为工业规模的低聚果糖(FOS)生物合成提供更经济的酶源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a12/12302737/fcba0b394aca/12934_2025_2798_Fig3_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验