He Huajun, Lim Jia Wei Melvin, Feng Minjun, Xing Zengshan, Sum Tze Chien
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
Chem Sci. 2025 Jul 24. doi: 10.1039/d5sc03392f.
Single- and multi-photon absorption cross-sections quantify the likelihood that a material will absorb one or more photons at a given wavelength. This critical parameter is fundamental to understanding light-matter interactions that underpin key applications in spectroscopy, photochemistry and advanced imaging techniques like multi-photon microscopy and deep tissue imaging. Conventional methods for measuring absorption cross-sections are often limited by sensitivity to sample morphology, type, concentration, and high excitation intensities - factors that can compromise reliability, increase experimental complexity, and risk sample damage. Herein, we present a direct, robust, and versatile method for quantifying absorption cross-sections across single- to multi-photon regimes, based on the saturation behaviour of transient absorption signals. Using this approach, we report for the first time the three-photon and four-photon absorption cross-sections of CsPbI perovskite nanocrystals and CdSe/ZnS quantum dots under 1700 nm and 2100 nm excitation. These values exceed those of incumbent materials used for mouse deep-brain imaging by at least an order of magnitude. Our method does not rely on photoluminescence signals, making it suitable for weakly or non-emissive materials. Importantly, our work provides a powerful generalizable tool to accelerate the discovery and optimization of next generation photon-harvesting materials.
单光子和多光子吸收截面量化了材料在给定波长下吸收一个或多个光子的可能性。这一关键参数对于理解光与物质相互作用至关重要,而这种相互作用是光谱学、光化学以及多光子显微镜和深部组织成像等先进成像技术中关键应用的基础。传统的测量吸收截面的方法通常受到对样品形态、类型、浓度的敏感性以及高激发强度的限制,这些因素会影响可靠性、增加实验复杂性并存在样品损坏的风险。在此,我们基于瞬态吸收信号的饱和行为,提出了一种直接、稳健且通用的方法,用于量化单光子到多光子区域的吸收截面。利用这种方法,我们首次报道了在1700 nm和2100 nm激发下,CsPbI钙钛矿纳米晶体和CdSe/ZnS量子点的三光子和四光子吸收截面。这些值比用于小鼠深部脑成像的现有材料至少高出一个数量级。我们的方法不依赖于光致发光信号,适用于弱发射或不发射的材料。重要的是,我们的工作提供了一个强大的通用工具,以加速下一代光子捕获材料的发现和优化。