Suppr超能文献

利用生物信息学与机器学习的整合来揭示糖尿病和肾结石潜在的共同生物标志物及分子通路。

Leveraging the integration of bioinformatics and machine learning to uncover common biomarkers and molecular pathways underlying diabetes and nephrolithiasis.

作者信息

Shen Xudong, Li Guoxiang, Yao Junfeng, Yang Junping, Ding Xiaobo, Hao Zongyao, Chen Yan, Chen Yang

机构信息

Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.

Institute of Urology, Anhui Medical University, Hefei, China.

出版信息

Front Immunol. 2025 Jul 11;16:1574157. doi: 10.3389/fimmu.2025.1574157. eCollection 2025.

Abstract

BACKGROUND

Kidney stones are a common benign condition of the urinary system, characterized by high incidence and recurrence rates. Our previous studies revealed an increased prevalence of kidney stones among diabetic patients, suggesting potential underlying mechanisms linking these two conditions. This study aims to identify key genes, pathways, and immune cells that may connect diabetes and kidney stones.

METHODS

We conducted bulk transcriptome differential analysis using our sequencing data, in conjunction with the AS dataset (GSE231569). After eliminating batch effects, we performed differential expression analysis and applied weighted gene co-expression network analysis (WGCNA) to investigate associations with 18 forms of cell death. Differentially expressed genes (DEGs) were subsequently analyzed using 10 commonly used machine learning algorithms, generating 101 unique combinations to identify the final DEGs. Functional enrichment analysis was performed, alongside the construction of protein-protein interaction (PPI) networks and transcription factor (TF)-gene interaction networks.

RESULTS

For the first time, bioinformatics tools were utilized to investigate the close genetic relationship between diabetes and kidney stones. Among 101 machine learning models, S100A4, ARPC1B, and CEBPD were identified as the most significant interacting genes linking diabetes and kidney stones. The diagnostic potential of these biomarkers was validated in both training and test datasets.

CONCLUSION

We identified three biomarkers-S100A4, ARPC1B, and CEBPD-that may play critical roles in the shared pathogenesis of diabetes and kidney stones. These findings open new avenues for the diagnosis and treatment of these comorbid conditions.

摘要

背景

肾结石是泌尿系统常见的良性疾病,发病率和复发率都很高。我们之前的研究显示糖尿病患者中肾结石的患病率有所增加,这表明这两种疾病之间可能存在潜在的潜在机制。本研究旨在确定可能将糖尿病和肾结石联系起来的关键基因、通路和免疫细胞。

方法

我们使用我们的测序数据以及AS数据集(GSE231569)进行批量转录组差异分析。消除批次效应后,我们进行差异表达分析,并应用加权基因共表达网络分析(WGCNA)来研究与18种细胞死亡形式的关联。随后使用10种常用的机器学习算法对差异表达基因(DEG)进行分析,生成101种独特组合以确定最终的DEG。进行功能富集分析,并构建蛋白质-蛋白质相互作用(PPI)网络和转录因子(TF)-基因相互作用网络。

结果

首次利用生物信息学工具研究糖尿病和肾结石之间的密切遗传关系。在101个机器学习模型中,S100A4、ARPC1B和CEBPD被确定为连接糖尿病和肾结石的最显著相互作用基因。这些生物标志物的诊断潜力在训练和测试数据集中均得到验证。

结论

我们确定了三种生物标志物——S100A4、ARPC1B和CEBPD——它们可能在糖尿病和肾结石的共同发病机制中起关键作用。这些发现为这些合并症的诊断和治疗开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2725/12289493/53f6c4b555b7/fimmu-16-1574157-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验