Shen Xudong, Li Guoxiang, Yao Junfeng, Yang Junping, Ding Xiaobo, Hao Zongyao, Chen Yan, Chen Yang
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Institute of Urology, Anhui Medical University, Hefei, China.
Front Immunol. 2025 Jul 11;16:1574157. doi: 10.3389/fimmu.2025.1574157. eCollection 2025.
Kidney stones are a common benign condition of the urinary system, characterized by high incidence and recurrence rates. Our previous studies revealed an increased prevalence of kidney stones among diabetic patients, suggesting potential underlying mechanisms linking these two conditions. This study aims to identify key genes, pathways, and immune cells that may connect diabetes and kidney stones.
We conducted bulk transcriptome differential analysis using our sequencing data, in conjunction with the AS dataset (GSE231569). After eliminating batch effects, we performed differential expression analysis and applied weighted gene co-expression network analysis (WGCNA) to investigate associations with 18 forms of cell death. Differentially expressed genes (DEGs) were subsequently analyzed using 10 commonly used machine learning algorithms, generating 101 unique combinations to identify the final DEGs. Functional enrichment analysis was performed, alongside the construction of protein-protein interaction (PPI) networks and transcription factor (TF)-gene interaction networks.
For the first time, bioinformatics tools were utilized to investigate the close genetic relationship between diabetes and kidney stones. Among 101 machine learning models, S100A4, ARPC1B, and CEBPD were identified as the most significant interacting genes linking diabetes and kidney stones. The diagnostic potential of these biomarkers was validated in both training and test datasets.
We identified three biomarkers-S100A4, ARPC1B, and CEBPD-that may play critical roles in the shared pathogenesis of diabetes and kidney stones. These findings open new avenues for the diagnosis and treatment of these comorbid conditions.
肾结石是泌尿系统常见的良性疾病,发病率和复发率都很高。我们之前的研究显示糖尿病患者中肾结石的患病率有所增加,这表明这两种疾病之间可能存在潜在的潜在机制。本研究旨在确定可能将糖尿病和肾结石联系起来的关键基因、通路和免疫细胞。
我们使用我们的测序数据以及AS数据集(GSE231569)进行批量转录组差异分析。消除批次效应后,我们进行差异表达分析,并应用加权基因共表达网络分析(WGCNA)来研究与18种细胞死亡形式的关联。随后使用10种常用的机器学习算法对差异表达基因(DEG)进行分析,生成101种独特组合以确定最终的DEG。进行功能富集分析,并构建蛋白质-蛋白质相互作用(PPI)网络和转录因子(TF)-基因相互作用网络。
首次利用生物信息学工具研究糖尿病和肾结石之间的密切遗传关系。在101个机器学习模型中,S100A4、ARPC1B和CEBPD被确定为连接糖尿病和肾结石的最显著相互作用基因。这些生物标志物的诊断潜力在训练和测试数据集中均得到验证。
我们确定了三种生物标志物——S100A4、ARPC1B和CEBPD——它们可能在糖尿病和肾结石的共同发病机制中起关键作用。这些发现为这些合并症的诊断和治疗开辟了新途径。