Suppr超能文献

优化加纳不同BMI水平女性的乳腺癌筛查策略:基于BMI依赖性肿瘤生长模型的模拟研究

Optimizing breast cancer screening strategies for women with different BMI levels in Ghana: A simulation-based study on BMI-dependent tumor growth model.

作者信息

Larbi Asamoah, Nyarko Eric, Iddi Samuel

机构信息

Department of Statistics and Actuarial Science, School of Physical and Mathematical Sciences, University of Ghana, Legon, Accra, Ghana.

African Population and Health Research Center, APHRC Campus, Nairobi, Kenya.

出版信息

PLOS Glob Public Health. 2025 Jul 28;5(7):e0004953. doi: 10.1371/journal.pgph.0004953. eCollection 2025.

Abstract

Breast cancer is a disease in which abnormal cells in the breast tissue grow out of control to form tumors and can spread to other parts of the body. While it can affect both men and women, it poses a greater risk to women, and it is a leading cause of cancer-related deaths worldwide. This study aimed to examine different mammography screening interval strategies using a body mass index (BMI)-dependent tumor growth model and a simulation approach. The goal was to identify the optimal screening strategy for various BMI levels by investigating the association between BMI and tumor growth rate, and further examine the relationship between BMI and screening outcomes, using a continuous growth model and Cox regression, respectively. Our results indicated that a biennial screening interval yielded the best outcomes for all BMI levels compared to annual and triennial strategies. Obese individuals may require higher screening sensitivity and are likely to benefit from shorter screening intervals than those with other body weights within the screening age range of 30 to 65 years. Additionally, obese individuals have a slightly higher risk of being diagnosed with interval-detected cancers rather than screen-detected cancers. In contrast, women with a normal body weight have a greater chance of being detected through screening rather than at intervals. These findings suggest that breast cancers may become symptomatic more quickly in obese individuals than in those with lower body weights. Consequently, the standard two-year screening interval may not be optimal for this group, indicating that more frequent screenings (14-18 months) could be necessary. This underscores the potential impact of improved screening practices to enhance the treatment and management of breast cancer.

摘要

乳腺癌是一种乳腺组织中的异常细胞失控生长形成肿瘤并可扩散至身体其他部位的疾病。虽然男性和女性都可能患乳腺癌,但女性患病风险更高,它是全球癌症相关死亡的主要原因之一。本研究旨在使用依赖体重指数(BMI)的肿瘤生长模型和模拟方法来检验不同的乳房X光筛查间隔策略。目标是通过研究BMI与肿瘤生长速率之间的关联,分别使用连续生长模型和Cox回归,确定针对不同BMI水平的最佳筛查策略,并进一步研究BMI与筛查结果之间的关系。我们的结果表明,与每年和每三年的筛查策略相比,每两年的筛查间隔对所有BMI水平都产生了最佳结果。在30至65岁的筛查年龄范围内,肥胖个体可能需要更高的筛查敏感度,并且可能比其他体重的个体从更短的筛查间隔中受益。此外,肥胖个体被诊断为间隔期发现的癌症而非筛查发现的癌症的风险略高。相比之下,体重正常的女性通过筛查而非间隔期发现癌症的机会更大。这些发现表明,肥胖个体的乳腺癌可能比体重较低的个体更快出现症状。因此,标准的两年筛查间隔可能对该群体并非最佳,这表明可能需要更频繁的筛查(14 - 18个月)。这凸显了改进筛查方法对加强乳腺癌治疗和管理的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9121/12303353/cbccc00acafa/pgph.0004953.g001.jpg

相似文献

1
Optimizing breast cancer screening strategies for women with different BMI levels in Ghana: A simulation-based study on BMI-dependent tumor growth model.
PLOS Glob Public Health. 2025 Jul 28;5(7):e0004953. doi: 10.1371/journal.pgph.0004953. eCollection 2025.
3
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.

本文引用的文献

1
Evaluation of optimal strategies for breast cancer screening in Ghana: A simulation study based on a continuous tumor growth model.
PLoS One. 2025 Jun 17;20(6):e0323485. doi: 10.1371/journal.pone.0323485. eCollection 2025.
2
Exploring the impact of body mass index on tumor biology and cancer development.
J Cancer Res Clin Oncol. 2024 Jul 27;150(7):372. doi: 10.1007/s00432-024-05890-4.
3
Exploring the multifaceted role of obesity in breast cancer progression.
Front Cell Dev Biol. 2024 Jul 8;12:1408844. doi: 10.3389/fcell.2024.1408844. eCollection 2024.
4
Tumor Doubling Time and Screening Interval.
Radiol Clin North Am. 2024 Jul;62(4):571-580. doi: 10.1016/j.rcl.2023.12.011. Epub 2024 Mar 7.
5
Risk Factors and Mortality Among Women With Interval Breast Cancer vs Screen-Detected Breast Cancer.
JAMA Netw Open. 2024 May 1;7(5):e2411927. doi: 10.1001/jamanetworkopen.2024.11927.
7
New Strategies for Locally Advanced Breast Cancer: A Review of Inflammatory Breast Cancer and Nonresponders.
Clin Breast Cancer. 2024 Jun;24(4):301-309. doi: 10.1016/j.clbc.2024.01.009. Epub 2024 Jan 21.
8
Association between high body mass index and prognosis of patients with early-stage breast cancer: A systematic review and meta-analysis.
Cancer Pathog Ther. 2023 Apr 5;1(3):205-215. doi: 10.1016/j.cpt.2023.03.002. eCollection 2023 Jul.
9
The variability of aggressiveness of grade 1 breast cancer.
J Gynecol Obstet Hum Reprod. 2023 Nov;52(9):102653. doi: 10.1016/j.jogoh.2023.102653. Epub 2023 Aug 25.
10
Novel predictions of invasive breast cancer risk in mammography screening cohorts.
Stat Med. 2023 Sep 20;42(21):3816-3837. doi: 10.1002/sim.9834. Epub 2023 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验