Pal Rajshree, Anand Smriti, Acharjee Santoshi, Anjana Vandana, Thakur Prateeksha, Biswas Ashis, Tomar Raghuvir Singh
Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India.
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, India.
Arch Biochem Biophys. 2025 Oct;772:110571. doi: 10.1016/j.abb.2025.110571. Epub 2025 Jul 26.
Zinc is a trace element that plays a crucial role in regulating various biological processes. To identify the factors involved in maintaining zinc homeostasis, we analysed the growth of histone mutants and gene deletions of chromatin-modifying factors. Growth assays revealed that specific regions and amino acid residues of histones H3 and H4, along with several chromatin-modifying factors, are essential for survival under zinc stress. Cells lacking certain motifs within H3 and H4 or in absence of chromatin modifiers exhibited hypersensitivity to zinc. ICP-MS analysis and fluorescence microscopy using a zinc-specific probe showed that zinc sensitive histone mutants accumulate higher zinc levels. The fluorescence microscopic analysis suggests that zinc sensitive mutants of chromatin modifying factors also contain more intracellular zinc. qRT-PCR analysis revealed that zinc-sensitive mutants exhibit upregulation of ZRT1, a high-affinity zinc transporter. Chromatin immunoprecipitation (ChIP) experiments further demonstrated constitutive recruitment of TBP at the ZRT1 promoter in zinc sensitive histone mutants in zinc untreated condition. Supplementation with amino acids, glutathione, and iron alleviated the zinc sensitivity, indicating a potential interplay between zinc toxicity and metabolic or redox imbalance. Notably, iron supplementation suppressed zinc-induced growth defects, implying disrupted iron homeostasis in the mutants. In summary, our findings provide evidence that specific regions of the H3 and H4 histones and chromatin-modifying factors are critical for regulating the cellular response to zinc. The mutations in histones and chromatin modifiers probably exhibit altered chromatin structure, leading to disruption in zinc metabolism.
锌是一种微量元素,在调节各种生物过程中起着至关重要的作用。为了确定参与维持锌稳态的因素,我们分析了组蛋白突变体的生长以及染色质修饰因子的基因缺失情况。生长试验表明,组蛋白H3和H4的特定区域及氨基酸残基,连同几种染色质修饰因子,对于在锌胁迫下的存活至关重要。缺乏H3和H4内某些基序或缺乏染色质修饰剂的细胞对锌表现出超敏感性。使用锌特异性探针的电感耦合等离子体质谱(ICP-MS)分析和荧光显微镜检查表明,锌敏感的组蛋白突变体积累了更高水平的锌。荧光显微镜分析表明,染色质修饰因子的锌敏感突变体也含有更多的细胞内锌。定量逆转录聚合酶链反应(qRT-PCR)分析显示,锌敏感突变体中高亲和力锌转运体ZRT1的表达上调。染色质免疫沉淀(ChIP)实验进一步证明,在未处理锌的情况下,锌敏感组蛋白突变体中TBP在ZRT1启动子处的组成型募集。补充氨基酸、谷胱甘肽和铁可减轻锌敏感性,表明锌毒性与代谢或氧化还原失衡之间可能存在相互作用。值得注意的是,补充铁可抑制锌诱导的生长缺陷,这意味着突变体中铁稳态受到破坏。总之,我们的研究结果提供了证据,表明组蛋白H3和H4的特定区域以及染色质修饰因子对于调节细胞对锌的反应至关重要。组蛋白和染色质修饰剂中的突变可能表现出染色质结构改变,导致锌代谢紊乱。