Suppr超能文献

疾病认知能否预测基于网络的抑郁症筛查后抑郁症治疗的接受情况?对DISCOVER随机对照试验的二次分析。

Do illness beliefs predict uptake of depression treatment after web-based depression screening? A secondary analysis of the DISCOVER RCT.

作者信息

Klee Matthias, Sikorski Franziska, Loewe Bernd, Kohlmann Sebastian

机构信息

Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.

Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

BMJ Ment Health. 2025 Jul 27;28(1):e301666. doi: 10.1136/bmjment-2025-301666.

Abstract

BACKGROUND

Only a minority of those with depressive disorder receive treatment. Besides system-level factors, individual factors could account for the gap between detection and treatment of depression in so far unreached but affected populations.

OBJECTIVE

This study tests the predictive value of illness beliefs (IB) for the uptake of depression treatment 6 months after web-based depression screening.

METHODS

This is a secondary analysis of the randomised controlled Germany-wide DISCOVER trial that investigated the effects of automated results feedback following web-based depression screening in untreated participants with at least moderate depression severity (Patient Health Questionnaire ≥10 points). IB were examined as predictors of depression treatment uptake. Eligible participants were at least 18 years old, reported proficiency in German language, and provided informed consent. IB were assessed at the time of screening (baseline) with an adapted version of the Brief Illness Perception Questionnaire. Uptake of depression treatment was operationalised as self-reported initialisation of psychotherapy and/or antidepressant medication 6 months after baseline. Analyses were adjusted for study arm.

FINDINGS

Data from N=871 participants of the DISCOVER trial providing follow-up data were analysed. IB denoting more consequences (OR (95% CI) 1.12 (1.00 to 1.26)), higher treatment control (OR (95% CI) 1.19 (1.11 to 1.29)) and a depression-conforming illness identity (OR (95% CI) 1.65 (1.15 to 2.36)) were associated with up to 56.8% relative increase in predicted probability of depression treatment uptake 6 months after baseline.

CONCLUSIONS

Results suggest considerable effects of IB for depression treatment uptake in untreated populations.

CLINICAL IMPLICATIONS

IB could reflect relevant barriers in access to depression care and, concurrently, intervention targets to foster health service utilisation in untreated populations.

摘要

背景

只有少数抑郁症患者接受治疗。除了系统层面的因素外,个体因素也可能导致在尚未得到治疗但受到影响的人群中,抑郁症的检测与治疗之间存在差距。

目的

本研究检验疾病认知(IB)对基于网络的抑郁症筛查6个月后抑郁症治疗接受情况的预测价值。

方法

这是一项对德国范围内的随机对照DISCOVER试验的二次分析,该试验调查了在未接受治疗、抑郁症严重程度至少为中度(患者健康问卷≥10分)的参与者中,基于网络的抑郁症筛查后自动反馈结果的效果。将IB作为抑郁症治疗接受情况的预测指标进行检验。符合条件的参与者年龄至少为18岁,报告德语熟练,并提供了知情同意书。在筛查时(基线),使用简化疾病认知问卷的改编版对IB进行评估。抑郁症治疗的接受情况定义为在基线6个月后自我报告开始心理治疗和/或服用抗抑郁药物。分析对研究组进行了调整。

结果

对DISCOVER试验中提供随访数据的N = 871名参与者的数据进行了分析。表示更多后果的IB(比值比(95%置信区间)1.12(1.00至1.26))、更高的治疗控制感(比值比(95%置信区间)1.19(1.11至1.29))以及符合抑郁症的疾病认知(比值比(95%置信区间)1.65(1.15至2.36))与基线6个月后抑郁症治疗接受的预测概率相对增加高达56.8%相关。

结论

结果表明IB对未治疗人群中抑郁症治疗的接受情况有显著影响。

临床意义

IB可能反映了获得抑郁症护理的相关障碍,同时也是促进未治疗人群利用卫生服务的干预目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c865/12306251/937ce92474c3/bmjment-28-1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验