Muolokwu Chinenye Edith, Gothwal Avinash, Kanekiyo Takahisa, Singh Jagdish
Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
Pharm Res. 2025 Aug;42(8):1331-1345. doi: 10.1007/s11095-025-03900-9. Epub 2025 Jul 28.
The study assessed dual-modified liposomes for delivering pApoE2 and pGFP across an in vitro blood-brain barrier (BBB) model supplemented with hydrocortisone (HC), evaluating their transfection efficiency in neuronal cells across the BBB and the impact of hydrocortisone on BBB integrity.
An in vitro BBB model was developed using brain endothelial cells (bEnd.3) co-cultured with primary astrocytes in a transwell system. Hydrocortisone's effect on BBB integrity was assessed via transepithelial electrical resistance (TEER), permeability and transport studies. Liposomes, modified with cell-penetrating peptide-RDP and Transferrin, encapsulating pApoE2 or pGFP-chitosan polyplex, were evaluated for neuronal cell transfection after crossing the BBB.
The BBB models supplemented with 150 nM HC showed a significant increase in TEER values compared to monolayers (p < 0.0001) and co-culture BBB models without HC supplementation (p < 0.01), indicating enhanced BBB integrity. Permeability assays demonstrated reduced sodium fluorescein translocation across the 150 nM hydrocortisone-supplemented BBB models compared to monolayers (p < 0.001) and co-culture models without HC supplementation (p < 0.05). Liposomes exhibited good characteristics and efficient encapsulation of pApoE2 or pGFP-chitosan polyplex, and successfully crossed the developed BBB model. Dual-modified liposomes (RDP-T) achieved significantly greater transfection efficiency of pApoE2 and pGFP in neuronal cells (p < 0.0001) compared to single-modified (RDP or T) and plain liposomes.
Hydrocortisone enhanced the BBB properties of the in vitro model, making it more representative of the in vivo BBB. Dual-modified liposomes demonstrated superior efficacy in delivering genetic materials across the BBB, providing a promising approach for therapeutic interventions in neurodegenerative diseases like Alzheimer's.
本研究评估了双修饰脂质体在补充氢化可的松(HC)的体外血脑屏障(BBB)模型中递送载脂蛋白E2(pApoE2)和绿色荧光蛋白(pGFP)的情况,评估其在穿过血脑屏障的神经元细胞中的转染效率以及氢化可的松对血脑屏障完整性的影响。
使用在Transwell系统中与原代星形胶质细胞共培养的脑内皮细胞(bEnd.3)建立体外血脑屏障模型。通过跨上皮电阻(TEER)、通透性和转运研究评估氢化可的松对血脑屏障完整性的影响。对用细胞穿透肽-RDP和转铁蛋白修饰、包裹pApoE2或pGFP-壳聚糖多聚体的脂质体,在穿过血脑屏障后进行神经元细胞转染评估。
与单层细胞(p<0.0001)和未补充氢化可的松的共培养血脑屏障模型(p<0.01)相比,补充150 nM氢化可的松的血脑屏障模型的TEER值显著增加,表明血脑屏障完整性增强。通透性测定表明,与单层细胞(p<0.001)和未补充氢化可的松的共培养模型(p<0.05)相比,在补充150 nM氢化可的松的血脑屏障模型中,荧光素钠的转运减少。脂质体表现出良好的特性和对pApoE2或pGFP-壳聚糖多聚体的有效包封,并成功穿过所建立的血脑屏障模型。与单修饰(RDP或T)脂质体和普通脂质体相比,双修饰脂质体(RDP-T)在神经元细胞中实现了pApoE2和pGFP显著更高的转染效率(p<0.0001)。
氢化可的松增强了体外模型的血脑屏障特性,使其更能代表体内血脑屏障。双修饰脂质体在跨血脑屏障递送遗传物质方面显示出卓越的效果,为阿尔茨海默病等神经退行性疾病的治疗干预提供了一种有前景的方法。