文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

急性中风严重程度评估:病变大小和功能连接的影响。

Acute Stroke Severity Assessment: The Impact of Lesion Size and Functional Connectivity.

作者信息

Weigel Karolin, Gaser Christian, Brodoehl Stefan, Wagner Franziska, Jochmann Elisabeth, Güllmar Daniel, Mayer Thomas E, Klingner Carsten M

机构信息

Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.

Biomagnetic Center, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.

出版信息

Brain Sci. 2025 Jul 9;15(7):735. doi: 10.3390/brainsci15070735.


DOI:10.3390/brainsci15070735
PMID:40722326
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12293964/
Abstract

BACKGROUND/OBJECTIVES: Early and accurate prediction of stroke severity is crucial for optimizing guided therapeutic decisions and improving outcomes. This study investigates the predictive value of lesion size and functional connectivity for neurological deficits, assessed by the National Institutes of Health Stroke Scale (NIHSS score), in patients with acute or subacute subcortical ischemic stroke. METHODS: Forty-four patients (mean age: 68.11 years, 23 male, and admission NIHSS score 4.30 points) underwent high-resolution anatomical and resting-state functional Magnetic Resonance Imaging (rs-fMRI) within seven days of stroke onset. Lesion size was volumetrically quantified, while functional connectivity within the motor, default mode, and frontoparietal networks was analyzed using seed-based correlation methods. Multiple linear regression and cross-validation were applied to develop predictive models for stroke severity. RESULTS: Our results showed that lesion size explained 48% of the variance in NIHSS scores (R = 0.48, cross-validated R = 0.49). Functional connectivity metrics alone were less predictive but enhanced model performance when combined with lesion size (achieving an R = 0.71, cross-validated R = 0.73). Additionally, left hemisphere connectivity features were particularly informative, as models based on left-hemispheric connectivity outperformed those using right-hemispheric or bilateral predictors. This suggests that the inclusion of contralateral hemisphere data did not enhance, and in some configurations, slightly reduced, model performance-potentially due to lateralized functional organization and lesion distribution in our cohort. CONCLUSIONS: The findings highlight lesion size as a reliable early marker of stroke severity and underscore the complementary value of functional connectivity analysis. Integrating rs-fMRI into clinical stroke imaging protocols offers a potential approach for refining prognostic models. Future research efforts should prioritize establishing this approach in larger cohorts and analyzing additional biomarkers to improve predictive models, advancing personalized therapeutic strategies for stroke management.

摘要

背景/目的:早期准确预测中风严重程度对于优化指导性治疗决策和改善预后至关重要。本研究调查了急性或亚急性皮质下缺血性中风患者中,病变大小和功能连接性对由美国国立卫生研究院卒中量表(NIHSS评分)评估的神经功能缺损的预测价值。 方法:44例患者(平均年龄:68.11岁,男性23例,入院时NIHSS评分为4.30分)在中风发作后7天内接受了高分辨率解剖和静息态功能磁共振成像(rs-fMRI)检查。对病变大小进行体积量化,同时使用基于种子点的相关方法分析运动、默认模式和额顶叶网络内的功能连接性。应用多元线性回归和交叉验证来建立中风严重程度的预测模型。 结果:我们的结果表明,病变大小解释了NIHSS评分中48%的方差(R = 0.48,交叉验证R = 0.49)。单独的功能连接性指标预测性较差,但与病变大小结合时可提高模型性能(R = 0.71,交叉验证R = 0.73)。此外,左半球连接性特征特别有信息量,因为基于左半球连接性的模型优于使用右半球或双侧预测指标的模型。这表明纳入对侧半球数据并未增强模型性能,在某些情况下还略有降低,这可能是由于我们队列中的功能组织和病变分布存在偏侧化。 结论:研究结果突出了病变大小作为中风严重程度可靠早期标志物的作用,并强调了功能连接性分析的互补价值。将rs-fMRI纳入临床中风成像方案为完善预后模型提供了一种潜在方法。未来的研究应优先在更大的队列中建立这种方法,并分析其他生物标志物以改进预测模型,推进中风管理的个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/7e798757c643/brainsci-15-00735-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/d4f6627d8206/brainsci-15-00735-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/00959ef54bd5/brainsci-15-00735-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/ad810b0ff5dc/brainsci-15-00735-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/7e798757c643/brainsci-15-00735-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/d4f6627d8206/brainsci-15-00735-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/00959ef54bd5/brainsci-15-00735-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/ad810b0ff5dc/brainsci-15-00735-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3345/12293964/7e798757c643/brainsci-15-00735-g004.jpg

相似文献

[1]
Acute Stroke Severity Assessment: The Impact of Lesion Size and Functional Connectivity.

Brain Sci. 2025-7-9

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[4]
Does Augmenting Irradiated Autografts With Free Vascularized Fibula Graft in Patients With Bone Loss From a Malignant Tumor Achieve Union, Function, and Complication Rate Comparably to Patients Without Bone Loss and Augmentation When Reconstructing Intercalary Resections in the Lower Extremity?

Clin Orthop Relat Res. 2025-6-26

[5]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
Sex-based differences in inflammatory predictors of outcomes in patients undergoing mechanical thrombectomy: an inverse probability weighting analysis.

Ther Adv Neurol Disord. 2025-6-21

[8]
The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery.

Cochrane Database Syst Rev. 2021-12-21

[9]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

[10]
Contrast-enhanced ultrasound using SonoVue® (sulphur hexafluoride microbubbles) compared with contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging for the characterisation of focal liver lesions and detection of liver metastases: a systematic review and cost-effectiveness analysis.

Health Technol Assess. 2013-4

本文引用的文献

[1]
Enhancing cerebral infarct classification by automatically extracting relevant fMRI features.

Brain Inform. 2025-6-17

[2]
Benchmarking machine learning models in lesion-symptom mapping for predicting language outcomes in stroke survivors.

Front Neuroimaging. 2025-5-30

[3]
Machine learning models based on location-radiomics enable the accurate prediction of early neurological function deterioration for acute stroke in elderly patients.

Front Aging Neurosci. 2025-4-23

[4]
Prediction of stroke severity: systematic evaluation of lesion representations.

Ann Clin Transl Neurol. 2024-12

[5]
CAT: a computational anatomy toolbox for the analysis of structural MRI data.

Gigascience. 2024-1-2

[6]
Predicting recovery following stroke: Deep learning, multimodal data and feature selection using explainable AI.

Neuroimage Clin. 2024

[7]
Investigating functional connectivity related to stroke recovery: A systematic review.

Brain Res. 2024-10-1

[8]
Optimizing early neurological deterioration prediction in acute ischemic stroke patients following intravenous thrombolysis: a LASSO regression model approach.

Front Neurosci. 2024-4-3

[9]
Clinical and imaging markers for the prognosis of acute ischemic stroke.

Front Neurol. 2024-2-29

[10]
Efficacy of Cerebellar Transcranial Magnetic Stimulation for Post-stroke Balance and Limb Motor Function Impairments: Meta-analyses of Random Controlled Trials and Resting-State fMRI Studies.

Cerebellum. 2024-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索