Bonkhoff Anna K, Cohen Alexander L, Drew William, Ferguson Michael A, Hussain Aaliya, Lin Christopher, Schaper Frederic L W V J, Bourached Anthony, Giese Anne-Katrin, Oliveira Lara C, Regenhardt Robert W, Schirmer Markus D, Jern Christina, Lindgren Arne G, Maguire Jane, Wu Ona, Zafar Sahar, Rhee John Y, Kimchi Eyal Y, Corbetta Maurizio, Rost Natalia S, Fox Michael D
J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Ann Clin Transl Neurol. 2024 Dec;11(12):3081-3094. doi: 10.1002/acn3.52215. Epub 2024 Oct 11.
OBJECTIVE: To systematically evaluate which lesion-based imaging features and methods allow for the best statistical prediction of poststroke deficits across independent datasets. METHODS: We utilized imaging and clinical data from three independent datasets of patients experiencing acute stroke (N = 109, N = 638, N = 794) to statistically predict acute stroke severity (NIHSS) based on lesion volume, lesion location, and structural and functional disconnection with the lesion location using normative connectomes. RESULTS: We found that prediction models trained on small single-center datasets could perform well using within-dataset cross-validation, but results did not generalize to independent datasets (median R = 0.2%). Performance across independent datasets improved using large single-center training data (R = 15.8%) and improved further using multicenter training data (R = 24.4%). These results were consistent across lesion attributes and prediction models. Including either structural or functional disconnection in the models outperformed prediction based on volume or location alone (P < 0.001, FDR-corrected). INTERPRETATION: We conclude that (1) prediction performance in independent datasets of patients with acute stroke cannot be inferred from cross-validated results within a dataset, as performance results obtained via these two methods differed consistently, (2) prediction performance can be improved by training on large and, importantly, multicenter datasets, and (3) structural and functional disconnection allow for improved prediction of acute stroke severity.
目的:系统评估基于病变的哪些影像学特征和方法能够在独立数据集中对卒中后功能缺损进行最佳的统计学预测。 方法:我们利用来自三个急性卒中患者独立数据集(N = 109、N = 638、N = 794)的影像学和临床数据,基于病变体积、病变位置以及使用标准化连接组与病变位置的结构和功能连接来统计学预测急性卒中严重程度(美国国立卫生研究院卒中量表)。 结果:我们发现,在小的单中心数据集上训练的预测模型在数据集内交叉验证时表现良好,但结果不能推广到独立数据集(中位数R = 0.2%)。使用大的单中心训练数据时,独立数据集的预测性能有所提高(R = 15.8%),而使用多中心训练数据时进一步提高(R = 24.4%)。这些结果在病变属性和预测模型中是一致的。在模型中纳入结构或功能连接比仅基于体积或位置的预测表现更好(P < 0.001,经错误发现率校正)。 解读:我们得出结论:(1)急性卒中患者独立数据集的预测性能不能从数据集中的交叉验证结果推断得出,因为通过这两种方法获得的性能结果始终不同;(2)通过在大型且重要的是多中心数据集上进行训练可以提高预测性能;(3)结构和功能连接有助于改善对急性卒中严重程度的预测。
Ann Clin Transl Neurol. 2024-12
Front Neurosci. 2024-8-9
Neuroimage Clin. 2025
Comput Methods Programs Biomed. 2025-5
Annu Int Conf IEEE Eng Med Biol Soc. 2023-7
Hum Brain Mapp. 2016-7
J Stroke Cerebrovasc Dis. 2023-9
Proc Natl Acad Sci U S A. 2023-2-7
Cortex. 2021-12
N Engl J Med. 2021-7-15