文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

中风严重程度的预测:病变表征的系统评估

Prediction of stroke severity: systematic evaluation of lesion representations.

作者信息

Bonkhoff Anna K, Cohen Alexander L, Drew William, Ferguson Michael A, Hussain Aaliya, Lin Christopher, Schaper Frederic L W V J, Bourached Anthony, Giese Anne-Katrin, Oliveira Lara C, Regenhardt Robert W, Schirmer Markus D, Jern Christina, Lindgren Arne G, Maguire Jane, Wu Ona, Zafar Sahar, Rhee John Y, Kimchi Eyal Y, Corbetta Maurizio, Rost Natalia S, Fox Michael D

机构信息

J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Ann Clin Transl Neurol. 2024 Dec;11(12):3081-3094. doi: 10.1002/acn3.52215. Epub 2024 Oct 11.


DOI:10.1002/acn3.52215
PMID:39394714
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11651206/
Abstract

OBJECTIVE: To systematically evaluate which lesion-based imaging features and methods allow for the best statistical prediction of poststroke deficits across independent datasets. METHODS: We utilized imaging and clinical data from three independent datasets of patients experiencing acute stroke (N = 109, N = 638, N = 794) to statistically predict acute stroke severity (NIHSS) based on lesion volume, lesion location, and structural and functional disconnection with the lesion location using normative connectomes. RESULTS: We found that prediction models trained on small single-center datasets could perform well using within-dataset cross-validation, but results did not generalize to independent datasets (median R  = 0.2%). Performance across independent datasets improved using large single-center training data (R  = 15.8%) and improved further using multicenter training data (R  = 24.4%). These results were consistent across lesion attributes and prediction models. Including either structural or functional disconnection in the models outperformed prediction based on volume or location alone (P < 0.001, FDR-corrected). INTERPRETATION: We conclude that (1) prediction performance in independent datasets of patients with acute stroke cannot be inferred from cross-validated results within a dataset, as performance results obtained via these two methods differed consistently, (2) prediction performance can be improved by training on large and, importantly, multicenter datasets, and (3) structural and functional disconnection allow for improved prediction of acute stroke severity.

摘要

目的:系统评估基于病变的哪些影像学特征和方法能够在独立数据集中对卒中后功能缺损进行最佳的统计学预测。 方法:我们利用来自三个急性卒中患者独立数据集(N = 109、N = 638、N = 794)的影像学和临床数据,基于病变体积、病变位置以及使用标准化连接组与病变位置的结构和功能连接来统计学预测急性卒中严重程度(美国国立卫生研究院卒中量表)。 结果:我们发现,在小的单中心数据集上训练的预测模型在数据集内交叉验证时表现良好,但结果不能推广到独立数据集(中位数R = 0.2%)。使用大的单中心训练数据时,独立数据集的预测性能有所提高(R = 15.8%),而使用多中心训练数据时进一步提高(R = 24.4%)。这些结果在病变属性和预测模型中是一致的。在模型中纳入结构或功能连接比仅基于体积或位置的预测表现更好(P < 0.001,经错误发现率校正)。 解读:我们得出结论:(1)急性卒中患者独立数据集的预测性能不能从数据集中的交叉验证结果推断得出,因为通过这两种方法获得的性能结果始终不同;(2)通过在大型且重要的是多中心数据集上进行训练可以提高预测性能;(3)结构和功能连接有助于改善对急性卒中严重程度的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/fbd4b545f46f/ACN3-11-3081-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/c604482f6151/ACN3-11-3081-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/4cc052f6c0c5/ACN3-11-3081-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/24e7a3e7964e/ACN3-11-3081-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/a2d3359b4609/ACN3-11-3081-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/1d37903cd8d7/ACN3-11-3081-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/81958fdc2593/ACN3-11-3081-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/fbd4b545f46f/ACN3-11-3081-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/c604482f6151/ACN3-11-3081-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/4cc052f6c0c5/ACN3-11-3081-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/24e7a3e7964e/ACN3-11-3081-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/a2d3359b4609/ACN3-11-3081-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/1d37903cd8d7/ACN3-11-3081-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/81958fdc2593/ACN3-11-3081-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7a/11651206/fbd4b545f46f/ACN3-11-3081-g007.jpg

相似文献

[1]
Prediction of stroke severity: systematic evaluation of lesion representations.

Ann Clin Transl Neurol. 2024-12

[2]
Normative connectome-based analysis of sensorimotor deficits in acute subcortical stroke.

Front Neurosci. 2024-8-9

[3]
Post-stroke deficit prediction from lesion and indirect structural and functional disconnection.

Brain. 2020-7-1

[4]
Post-stroke outcome prediction based on lesion-derived features.

Neuroimage Clin. 2025

[5]
Mapping Language Networks Using the Structural and Dynamic Brain Connectomes.

eNeuro. 2017-11-6

[6]
Multimodal radiomics based on lesion connectome predicts stroke prognosis.

Comput Methods Programs Biomed. 2025-5

[7]
Prediction of behavioral deficits in acute stroke from lesion and structural disconnection mapping.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[8]
Structural connectome disruption at baseline predicts 6-months post-stroke outcome.

Hum Brain Mapp. 2016-7

[9]
Role of Acute Lesion Topography in Initial Ischemic Stroke Severity and Long-Term Functional Outcomes.

Stroke. 2015-9

[10]
Picturing the Size and Site of Stroke With an Expanded National Institutes of Health Stroke Scale.

Stroke. 2016-6

引用本文的文献

[1]
Large-scale network topography of stroke predicts functional outcome after mechanical thrombectomy.

Brain Commun. 2025-8-28

[2]
Acute Stroke Severity Assessment: The Impact of Lesion Size and Functional Connectivity.

Brain Sci. 2025-7-9

本文引用的文献

[1]
Scaling behaviours of deep learning and linear algorithms for the prediction of stroke severity.

Brain Commun. 2024-1-10

[2]
Associations between early in-hospital medications and the development of delirium in patients with stroke.

J Stroke Cerebrovasc Dis. 2023-9

[3]
Latent disconnectome prediction of long-term cognitive-behavioural symptoms in stroke.

Brain. 2023-5-2

[4]
Bias in machine learning models can be significantly mitigated by careful training: Evidence from neuroimaging studies.

Proc Natl Acad Sci U S A. 2023-2-7

[5]
Multimodal and multidomain lesion network mapping enhances prediction of sensorimotor behavior in stroke patients.

Sci Rep. 2022-12-27

[6]
Mapping the deficit dimension structure of the National Institutes of Health Stroke Scale.

EBioMedicine. 2023-1

[7]
Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping.

Brain. 2022-5-24

[8]
Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence.

Brain. 2022-4-18

[9]
Reclassifying stroke lesion anatomy.

Cortex. 2021-12

[10]
The Clinician and Dataset Shift in Artificial Intelligence.

N Engl J Med. 2021-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索