Dobromyslin Vitaly I, Zhou Wenjin
University of Massachusetts, Lowell, MA, USA.
Brain Inform. 2025 Jun 17;12(1):16. doi: 10.1186/s40708-025-00259-w.
Accurate detection of cortical infarct is critical for timely treatment and improved patient outcomes. Current brain imaging methods often require invasive procedures that primarily assess blood vessel and structural white matter damage. There is a need for non-invasive approaches, such as functional MRI (fMRI), that better reflect neuronal viability. This study utilized automated machine learning (auto-ML) techniques to identify novel infarct-specific fMRI biomarkers specifically related to chronic cortical infarcts. We analyzed resting-state fMRI data from the multi-center ADNI dataset, which included 20 chronic infarct patients and 30 cognitively normal (CN) controls. This study utilized automated machine learning (auto-ML) techniques to identify novel fMRI biomarkers specifically related to chronic cortical infarcts. Surface-based registration methods were applied to minimize partial-volume effects typically associated with lower resolution fMRI data. We evaluated the performance of 7 previously known fMRI biomarkers alongside 107 new auto-generated fMRI biomarkers across 33 different classification models. Our analysis identified 6 new fMRI biomarkers that substantially improved infarct detection performance compared to previously established metrics. The best-performing combination of biomarkers and classifiers achieved a cross-validation ROC score of 0.791, closely matching the accuracy of diffusion-weighted imaging methods used in acute stroke detection. Our proposed auto-ML fMRI infarct-detection technique demonstrated robustness across diverse imaging sites and scanner types, highlighting the potential of automated feature extraction to significantly enhance non-invasive infarct detection.
准确检测皮质梗死对于及时治疗和改善患者预后至关重要。目前的脑成像方法通常需要侵入性操作,主要用于评估血管和结构性白质损伤。需要诸如功能磁共振成像(fMRI)等非侵入性方法,以更好地反映神经元活力。本研究利用自动机器学习(auto-ML)技术来识别与慢性皮质梗死特别相关的新型梗死特异性fMRI生物标志物。我们分析了来自多中心ADNI数据集的静息态fMRI数据,其中包括20名慢性梗死患者和30名认知正常(CN)对照。本研究利用自动机器学习(auto-ML)技术来识别与慢性皮质梗死特别相关的新型fMRI生物标志物。基于表面的配准方法被应用于最小化通常与较低分辨率fMRI数据相关的部分容积效应。我们在33种不同的分类模型中评估了7种先前已知的fMRI生物标志物以及107种新的自动生成的fMRI生物标志物的性能。我们的分析确定了6种新的fMRI生物标志物,与先前建立的指标相比,其梗死检测性能有显著提高。生物标志物和分类器的最佳组合实现了0.791的交叉验证ROC评分,与急性中风检测中使用的扩散加权成像方法的准确性相近。我们提出的自动机器学习fMRI梗死检测技术在不同的成像部位和扫描仪类型中都表现出稳健性,突出了自动特征提取在显著增强非侵入性梗死检测方面的潜力。