Suppr超能文献

用于原始和衍生商业近红外光谱测量的点预测和区间预测的时间序列自回归模型:一项探索性颅脑创伤与健康对照分析

Time-Series Autoregressive Models for Point and Interval Forecasting of Raw and Derived Commercial Near-Infrared Spectroscopy Measures: An Exploratory Cranial Trauma and Healthy Control Analysis.

作者信息

Sainbhi Amanjyot Singh, Froese Logan, Stein Kevin Y, Vakitbilir Nuray, Hasan Rakibul, Gomez Alwyn, Bergmann Tobias, Silvaggio Noah, Hayat Mansoor, Moon Jaewoong, Zeiler Frederick A

机构信息

Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.

Department of Clinical Neurosciences, Karolinska Institutet, 171 77 Stockholm, Sweden.

出版信息

Bioengineering (Basel). 2025 Jun 21;12(7):682. doi: 10.3390/bioengineering12070682.

Abstract

Cerebral near-infrared spectroscopy (NIRS) systems have been demonstrated to continuously measure aspects of oxygen delivery and cerebrovascular reactivity. However, it remains unknown whether the prediction of these cerebral physiologic signals into the future is feasible. Leveraging existing archived data sources, four point and interval-forecasting methods using autoregressive integrative moving average (ARIMA) models were evaluated to assess their ability to predict NIRS cerebral physiologic signals. NIRS-based regional cerebral oxygen saturation (rSO) and cerebral oximetry index signals were derived in three temporal resolutions (10 s, 1 min, and 5 min). Anchored- and sliding-window forecasting, with varying model memory, using point and interval approaches were used to forecast signals using fitted optimal ARIMA models. The absolute difference in the forecasted and measured data was evaluated with median absolute deviation, along with root mean squared error analysis. Further, Pearson correlation and Bland-Altman statistical analyses were performed. Data from 102 healthy controls, 27 spinal surgery patients, and 101 traumatic brain injury patients were retrospectively analyzed. All ARIMA-based point and interval prediction models demonstrated small residuals, while correlation and agreement varied based on model memory. The ARIMA-based sliding-window approach performed superior to the anchored approach due to data partitioning and model memory. ARIMA-based sliding-window forecasting using point and interval approaches can forecast rSO and the cerebral oximetry index with reasonably small residuals across all populations. Correlation and agreement between the predicted versus actual values varies substantially based on data-partitioning methods and model memory. Further work is required to assess the ability to forecast high-frequency NIRS signals using ARIMA and ARIMA-variant models in healthy and cranial trauma populations.

摘要

脑近红外光谱(NIRS)系统已被证明能够持续测量氧输送和脑血管反应性的各个方面。然而,能否对这些脑生理信号进行未来预测仍不清楚。利用现有的存档数据源,评估了使用自回归积分移动平均(ARIMA)模型的四种点预测和区间预测方法,以评估它们预测NIRS脑生理信号的能力。基于NIRS的局部脑氧饱和度(rSO)和脑血氧饱和度指数信号以三种时间分辨率(10秒、1分钟和5分钟)得出。使用固定窗口和滑动窗口预测,采用不同的模型记忆,使用点预测和区间预测方法,利用拟合的最优ARIMA模型对信号进行预测。通过中位数绝对偏差以及均方根误差分析来评估预测数据与实测数据之间的绝对差异。此外,还进行了Pearson相关性分析和Bland-Altman统计分析。对102名健康对照者、27名脊柱手术患者和101名创伤性脑损伤患者的数据进行了回顾性分析。所有基于ARIMA的点预测和区间预测模型的残差都较小,而相关性和一致性则因模型记忆而异。基于ARIMA的滑动窗口方法由于数据划分和模型记忆而表现优于固定窗口方法。基于ARIMA的滑动窗口预测采用点预测和区间预测方法,能够在所有人群中以相对较小的残差预测rSO和脑血氧饱和度指数。预测值与实际值之间的相关性和一致性因数据划分方法和模型记忆而有很大差异。需要进一步开展工作,以评估在健康人群和颅脑创伤人群中使用ARIMA及其变体模型预测高频NIRS信号的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验