Suppr超能文献

OKEN:用于全切片图像分类的监督式进化可优化降维框架。

OKEN: A Supervised Evolutionary Optimizable Dimensionality Reduction Framework for Whole Slide Image Classification.

作者信息

Oskouei Soroush, Pedersen André, Valla Marit, Dale Vibeke Grotnes, Wahl Sissel Gyrid Freim, Haugum Mats Dehli, Langø Thomas, Ramnefjell Maria Paula, Akslen Lars Andreas, Kiss Gabriel, Sorger Hanne

机构信息

Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.

Clinic of Medicine, Levanger Hospital, Nord-Trøndelag Health Trust, NO-7600 Levanger, Norway.

出版信息

Bioengineering (Basel). 2025 Jul 4;12(7):733. doi: 10.3390/bioengineering12070733.

Abstract

Classification of lung cancer subtypes is a critical clinical step; however, relying solely on H&E-stained histopathology images can pose challenges, and additional immunohistochemical analysis is sometimes required for definitive subtyping. Digital pathology facilitates the use of artificial intelligence for automatic classification of digital tissue slides. Automatic classification of Whole Slide Images (WSIs) typically involves extracting features from patches obtained from them. The aim of this study was to develop a WSI classification framework utilizing an optimizable kernel to encode features from each patch from a WSI into a desirable and adjustable latent space using an evolutionary algorithm. The encoded data can then be used for classification and segmentation while being computationally more efficient. Our proposed framework is compared with a state-of-the-art model, Vim4Path, on an internal and external dataset of lung cancer WSIs. The proposed model outperforms Vim-S16 in accuracy and F score at both ×2.5 and ×10 magnification levels on the internal test set, with the highest accuracy (0.833) and F score (0.721) at ×2.5. On the external test set, Vim-S16 at ×10 achieves the highest accuracy (0.732), whereas OKEN-DenseNet121 at ×2.5 has the best F score (0.772). In future work, finding a dynamic way to tune the output dimensions of the evolutionary algorithm would be of value.

摘要

肺癌亚型的分类是一个关键的临床步骤;然而,仅依靠苏木精和伊红(H&E)染色的组织病理学图像可能会带来挑战,有时还需要额外的免疫组织化学分析来进行明确的亚型分类。数字病理学有助于利用人工智能对数字组织切片进行自动分类。全切片图像(WSIs)的自动分类通常涉及从从中获取的补丁中提取特征。本研究的目的是开发一个WSI分类框架,利用一个可优化的内核,通过进化算法将来自WSI的每个补丁的特征编码到一个理想且可调整的潜在空间中。然后,编码后的数据可用于分类和分割,同时计算效率更高。我们提出的框架在肺癌WSIs的内部和外部数据集上与一个先进的模型Vim4Path进行了比较。在内部测试集上,所提出的模型在×2.5和×10放大倍数水平下的准确率和F分数方面均优于Vim-S16,在×2.5时准确率最高(0.833),F分数最高(0.721)。在外部测试集上,×10的Vim-S16准确率最高(0.732),而×2.5的OKEN-DenseNet121的F分数最佳(0.772)。在未来的工作中,找到一种动态方法来调整进化算法的输出维度将是有价值的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a55/12292405/5c06f5f14290/bioengineering-12-00733-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验