Suppr超能文献

用于计算组织病理学的深度神经网络模型:一项综述。

Deep neural network models for computational histopathology: A survey.

作者信息

Srinidhi Chetan L, Ciga Ozan, Martel Anne L

机构信息

Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada.

Department of Medical Biophysics, University of Toronto, Canada.

出版信息

Med Image Anal. 2021 Jan;67:101813. doi: 10.1016/j.media.2020.101813. Epub 2020 Sep 25.

Abstract

Histopathological images contain rich phenotypic information that can be used to monitor underlying mechanisms contributing to disease progression and patient survival outcomes. Recently, deep learning has become the mainstream methodological choice for analyzing and interpreting histology images. In this paper, we present a comprehensive review of state-of-the-art deep learning approaches that have been used in the context of histopathological image analysis. From the survey of over 130 papers, we review the field's progress based on the methodological aspect of different machine learning strategies such as supervised, weakly supervised, unsupervised, transfer learning and various other sub-variants of these methods. We also provide an overview of deep learning based survival models that are applicable for disease-specific prognosis tasks. Finally, we summarize several existing open datasets and highlight critical challenges and limitations with current deep learning approaches, along with possible avenues for future research.

摘要

组织病理学图像包含丰富的表型信息,可用于监测导致疾病进展和患者生存结果的潜在机制。最近,深度学习已成为分析和解释组织学图像的主流方法选择。在本文中,我们对在组织病理学图像分析背景下使用的最新深度学习方法进行了全面综述。通过对130多篇论文的调研,我们基于不同机器学习策略(如监督学习、弱监督学习、无监督学习、迁移学习以及这些方法的各种其他子变体)的方法学方面来回顾该领域的进展。我们还概述了适用于特定疾病预后任务的基于深度学习的生存模型。最后,我们总结了几个现有的开放数据集,强调了当前深度学习方法面临的关键挑战和局限性,以及未来研究可能的途径。

相似文献

4
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
9
Predicting cancer outcomes from histology and genomics using convolutional networks.使用卷积网络从组织学和基因组学预测癌症结局。
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979. doi: 10.1073/pnas.1717139115. Epub 2018 Mar 12.
10
Deep computational pathology in breast cancer.深度学习在乳腺癌中的应用。
Semin Cancer Biol. 2021 Jul;72:226-237. doi: 10.1016/j.semcancer.2020.08.006. Epub 2020 Aug 17.

引用本文的文献

9
Role of artificial intelligence in revolutionizing drug discovery.人工智能在变革药物研发中的作用。
Fundam Res. 2024 May 9;5(3):1273-1287. doi: 10.1016/j.fmre.2024.04.021. eCollection 2025 May.

本文引用的文献

2
Robust Histopathology Image Analysis: to Label or to Synthesize?强大的组织病理学图像分析:标记还是合成?
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8533-8542. doi: 10.1109/CVPR.2019.00873. Epub 2020 Jan 9.
3
Deep Multi-Magnification Networks for multi-class breast cancer image segmentation.用于多类乳腺癌图像分割的深度多重放大网络。
Comput Med Imaging Graph. 2021 Mar;88:101866. doi: 10.1016/j.compmedimag.2021.101866. Epub 2021 Jan 12.
5
Measuring Domain Shift for Deep Learning in Histopathology.深度学习在组织病理学中的领域迁移测量。
IEEE J Biomed Health Inform. 2021 Feb;25(2):325-336. doi: 10.1109/JBHI.2020.3032060. Epub 2021 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验