Suppr超能文献

使用深度学习的自动动脉瘤边界检测与体积估计

Automated Aneurysm Boundary Detection and Volume Estimation Using Deep Learning.

作者信息

Bagheri Rajeoni Alireza, Pederson Breanna, Lessner Susan M, Valafar Homayoun

机构信息

Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29201, USA.

Department Health, Sport, and Human Physiology, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Diagnostics (Basel). 2025 Jul 17;15(14):1804. doi: 10.3390/diagnostics15141804.

Abstract

Precise aneurysm volume measurement offers a transformative edge for risk assessment and treatment planning in clinical settings. Currently, clinical assessments rely heavily on manual review of medical imaging, a process that is time-consuming and prone to inter-observer variability. The widely accepted standard of care primarily focuses on measuring aneurysm diameter at its widest point, providing a limited perspective on aneurysm morphology and lacking efficient methods to measure aneurysm volumes. Yet, volume measurement can offer deeper insight into aneurysm progression and severity. In this study, we propose an automated approach that leverages the strengths of pre-trained neural networks and expert systems to delineate aneurysm boundaries and compute volumes on an unannotated dataset from 60 patients. The dataset includes slice-level start/end annotations for aneurysm but no pixel-wise aorta segmentations. Our method utilizes a pre-trained UNet to automatically locate the aorta, employs SAM2 to track the aorta through vascular irregularities such as aneurysms down to the iliac bifurcation, and finally uses a Long Short-Term Memory (LSTM) network or expert system to identify the beginning and end points of the aneurysm within the aorta. Despite no manual aorta segmentation, our approach achieves promising accuracy, predicting the aneurysm start point with an score of 71%, the end point with an score of 76%, and the volume with an score of 92%. This technique has the potential to facilitate large-scale aneurysm analysis and improve clinical decision-making by reducing dependence on annotated datasets.

摘要

精确的动脉瘤体积测量为临床环境中的风险评估和治疗规划提供了变革性的优势。目前,临床评估严重依赖于对医学影像的人工审查,这一过程既耗时又容易出现观察者间的差异。广泛接受的护理标准主要侧重于测量动脉瘤最宽处的直径,对动脉瘤形态的了解有限,且缺乏测量动脉瘤体积的有效方法。然而,体积测量可以更深入地了解动脉瘤的进展和严重程度。在本研究中,我们提出了一种自动化方法,该方法利用预训练神经网络和专家系统的优势,在来自60名患者的未标注数据集上勾勒动脉瘤边界并计算体积。该数据集包括动脉瘤的切片级起始/结束标注,但没有逐像素的主动脉分割。我们的方法利用预训练的UNet自动定位主动脉,采用SAM2跟踪主动脉通过动脉瘤等血管不规则处直至髂总动脉分叉处,最后使用长短期记忆(LSTM)网络或专家系统识别主动脉内动脉瘤的起点和终点。尽管没有手动进行主动脉分割,我们的方法仍取得了可观的准确性,预测动脉瘤起点的得分率为71%,终点的得分率为76%,体积的得分率为92%。该技术有可能通过减少对标注数据集的依赖来促进大规模动脉瘤分析并改善临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00ea/12293731/faecf5026232/diagnostics-15-01804-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验