Claria Benjamín, Espinosa Alejandra, Rodríguez Alicia, Pando María Elsa, Dovale-Rosabal Gretel, Romero Nalda, Mayorga Katherynne, Tapia Evelyn, Saez Jenifer, Tsuchida Melissa, Vásquez Karla, Valenzuela Rodrigo, Pérez Álvaro, Díaz Patricio, Aubourg Santiago P
Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Dr. Carlos Lorca Tobar 964, Santiago 8380494, Chile.
Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
Antioxidants (Basel). 2025 Jun 26;14(7):790. doi: 10.3390/antiox14070790.
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from under supercritical CO conditions. These lipids were derived from a concentrate of rainbow trout () belly oil, rich in long-chain polyunsaturated omega-3 fatty acids (LCPUFAn-3), and cold-pressed maqui seed oil (MO, (Mol.) Stuntz). Their effects were then evaluated in a murine high-fat diet (HFD) model. The fatty acid profile, tocopherol and tocotrienol content, and thin-layer chromatography of ALω-3 were analyzed. After 8 weeks on an HFD, male C57BL/6 mice were divided into four groups and switched to a control diet (CD) with the following supplements for 3 weeks: Glycerol (G), commercial marine Omega-3 (CMω-3), a mixture of LCPUFAn-3 concentrate + MO (Mω-3), or ALω-3. The total body and organ weights, serum markers, and liver and visceral fat pro-inflammatory marker expression levels were assessed. ALω-3 contained 13.4% oleic, 33.9% linoleic, 6.3% α-linolenic, 10.7% eicosapentaenoic, and 16.2% docosahexaenoic fatty acids. The β, γ, δ-tocopherol, and β, γ-tocotrienol values were 22.9 ± 1.4, 24.9 ± 0.2, 6.8 ± 0.7, 22.9 ± 1.7, and 22.4 ± 4.7 mg·kg, respectively, with α-tocopherol detected in traces. ALω-3 supplementation increased serum Trolox equivalent capacity, significantly reduced serum GPT levels ( < 0.01), and enhanced postprandial glucose tolerance ( < 0.001), although it did not alter insulin resistance (HOMA-IR). These findings indicate ALω-3's potential for mitigating the glucose intolerance, liver damage, and oxidative stress associated with obesity and MetS, highlighting the need for additional research to explore its potential health benefits.
生物活性化合物在肥胖症和代谢综合征(MetS)的管理方面已显示出巨大潜力。本研究调查了在超临界二氧化碳条件下使用非特异性脂肪酶B通过酶促酸解合成的抗氧化脂质(ALω-3)的作用。这些脂质来源于富含长链多不饱和ω-3脂肪酸(LCPUFAn-3)的虹鳟鱼()鱼肚油浓缩物和冷榨的马基莓籽油(MO,(Mol.)Stuntz)。然后在小鼠高脂饮食(HFD)模型中评估它们的作用。分析了ALω-3的脂肪酸谱、生育酚和生育三烯酚含量以及薄层色谱。在高脂饮食8周后,将雄性C57BL/6小鼠分为四组,并改用对照饮食(CD),并添加以下补充剂,持续3周:甘油(G)、市售海洋ω-3(CMω-3)、LCPUFAn-3浓缩物+MO的混合物(Mω-3)或ALω-3。评估了总体重和器官重量、血清标志物以及肝脏和内脏脂肪促炎标志物的表达水平。ALω-3含有13.4%的油酸、33.9%的亚油酸、6.3%的α-亚麻酸、10.7%的二十碳五烯酸和16.2%的二十二碳六烯酸。β、γ、δ-生育酚和β、γ-生育三烯酚的值分别为22.9±1.4、24.9±0.2、6.8±0.7、22.9±1.7和22.4±4.7mg·kg,仅检测到痕量的α-生育酚。补充ALω-3可提高血清Trolox等效能力,显著降低血清GPT水平(<0.01),并增强餐后葡萄糖耐量(<0.001),尽管它没有改变胰岛素抵抗(HOMA-IR)。这些发现表明ALω-3具有减轻与肥胖症和MetS相关的葡萄糖不耐受、肝脏损伤和氧化应激的潜力,突出了需要进行更多研究以探索其潜在健康益处。