Suppr超能文献

自闭症谱系障碍中步态时间变异性增加:一项动作捕捉与机器学习分析。

Increased Temporal Variability of Gait in ASD: A Motion Capture and Machine Learning Analysis.

作者信息

Goldthorp Katharine, Henderson Benn, Yogarajah Pratheepan, Gardiner Bryan, McGinnity Thomas Martin, Nicholas Brad, Wimpory Dawn C

机构信息

School of Psychology and Sports Science, Bangor University, Bangor LL57 2DG, UK.

School of Computing, Engineering and Intelligent Systems, Ulster University, Derry (Londonderry) BT48 7JL, UK.

出版信息

Biology (Basel). 2025 Jul 8;14(7):832. doi: 10.3390/biology14070832.

Abstract

Motor deficits, including atypical gait, are common in individuals with autism spectrum disorder (ASD), although the precise nature and cause of this co-occurrence is unclear. Because walking is a natural activity and gait timing is a metric that is relatively accessible to measurement, we explored whether autistic gait could be described solely in terms of the timing of gait parameters. The aim was to establish whether temporal analysis, including machine learning models, could be used as a group classifier between ASD and typically developing (TD) individuals. Thus, we performed a high-resolution temporal analysis of gait on two age-matched groups of male participants: one group with high-functioning ASD and a comparison TD group (each = 16, age range 7 to 35 years). The primary data were collected using a VICON 3D motion analysis system. Significant increased temporal variability of all gait parameters tested was observed for the ASD group compared to the TD group ( < 0.001). Further machine learning analysis showed that the temporal variability of gait could be used as a group classifier for ASD. Of the twelve models tested, the best-fitting model type was random forest. The temporal analysis of gait with machine learning algorithms may be useful as a future ASD diagnostic aid.

摘要

运动缺陷,包括非典型步态,在自闭症谱系障碍(ASD)患者中很常见,尽管这种共现的确切性质和原因尚不清楚。由于行走是一种自然活动,且步态时间是一个相对易于测量的指标,我们探讨了自闭症步态是否可以仅根据步态参数的时间来描述。目的是确定包括机器学习模型在内的时间分析是否可以用作ASD患者与发育正常(TD)个体之间的群体分类器。因此,我们对两组年龄匹配的男性参与者进行了步态的高分辨率时间分析:一组是高功能ASD患者,另一组是对照TD组(每组n = 16,年龄范围7至35岁)。主要数据使用VICON 3D运动分析系统收集。与TD组相比,ASD组所有测试步态参数的时间变异性显著增加(p < 0.001)。进一步的机器学习分析表明,步态的时间变异性可以用作ASD的群体分类器。在测试的12个模型中,拟合度最好的模型类型是随机森林。使用机器学习算法对步态进行时间分析可能作为未来ASD诊断的辅助手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cbf/12292520/9e7a363c2e2e/biology-14-00832-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验