Dzhauari Stalik S, Primak Alexandra L, Basalova Nataliya A, Kalinina Natalia I, Monakova Anna O, Bozov Kirill D, Velichko Arkadiy Ya, Illarionova Maria E, Grigorieva Olga A, Akopyan Zhanna A, Popov Vladimir S, Malkov Pavel G, Efimenko Anastasia Yu, Tkachuk Vsevolod A, Karagyaur Maxim N
Medical Research and Education Institute, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119191 Moscow, Russia.
Int J Mol Sci. 2025 Jul 12;26(14):6697. doi: 10.3390/ijms26146697.
Nerve tissue damage is an unsolved problem in modern neurology and neurosurgery, which prompts the need to search for approaches to stimulate neuroprotection and regeneration of neural tissue. Earlier we have shown that the secretome of human mesenchymal stromal cells (MSCs) stimulates rat survival, reduces the severity of neurological deficits, and decreases the volume of brain damage in a hemorrhagic stroke model. A significant disadvantage of using the MSC secretome is the need to concentrate it (at least 5-10 fold) to achieve appreciable pharmacological activity. This increases the cost of obtaining clinically applicable amounts of secretome and slows down the clinical translation of this technology. Here, we created a number of genetically modified human MSC cultures, including immortalized MSCs and those with hyperexpression of brain-derived neurotrophic factor (BDNF) and urokinase-type plasminogen activator (uPA) and with suppressed expression of Von Hippel-Lindau tumor suppressor (VHL), and we evaluated the pharmacological activity of their secretomes in a model of intracerebral hemorrhage (ICH) in rats. The secretome of MSCs immortalized by hyperexpression of the catalytic subunit of human telomerase (hTERT) revealed neuroprotective activity indistinguishable from that of primary MSC cultures, yet it still required 10-fold concentration to achieve neuroprotective efficacy. The secretome of MSC culture with combined hyperexpression of BDNF and uPA and suppressed expression of Von Hippel-Lindau tumor suppressor even without additional concentration reduced the severity of neurological disorders and decreased brain lesion volume in the ICH model. The secretomes of MSCs with separate overexpression of BDNF and uPA or suppression of VHL had no such effect or, on the contrary, revealed a toxic effect in the ICH model. Presumably, this may be due to an imbalance in the representation of individual growth factors in the secretome of genetically modified MSCs, which individually may lead to undesirable effects in damaged nervous tissue, such as increased permeability of the blood-brain barrier (under the influence of pro-angiogenic factors) or neural cell apoptosis (due to an excess of neurotrophic factors). The obtained data show that genetic modification of MSC cultures can enhance or alter the therapeutic activity of their secretomes, which can be used in the creation of promising sources of biopharmaceutical substances.
神经组织损伤是现代神经病学和神经外科领域一个尚未解决的问题,这促使人们需要寻找刺激神经保护和神经组织再生的方法。我们之前已经表明,人间充质基质细胞(MSCs)的分泌组可促进大鼠存活,降低神经功能缺损的严重程度,并减少出血性中风模型中的脑损伤体积。使用MSCs分泌组的一个显著缺点是需要对其进行浓缩(至少5至10倍)才能获得可观的药理活性。这增加了获得临床适用量分泌组的成本,并减缓了该技术的临床转化。在此,我们创建了多种基因改造的人MSC培养物,包括永生化的MSCs以及脑源性神经营养因子(BDNF)和尿激酶型纤溶酶原激活剂(uPA)过表达且冯·希佩尔-林道肿瘤抑制因子(VHL)表达受抑制的MSCs,我们在大鼠脑出血(ICH)模型中评估了它们分泌组的药理活性。通过人端粒酶催化亚基(hTERT)过表达永生化的MSCs的分泌组显示出与原代MSC培养物难以区分的神经保护活性,但仍需要10倍浓缩才能达到神经保护效果。BDNF和uPA联合过表达且VHL表达受抑制的MSC培养物的分泌组,即使不进行额外浓缩,也能降低ICH模型中神经功能障碍的严重程度并减少脑损伤体积。单独过表达BDNF或uPA或抑制VHL的MSCs的分泌组没有这种效果,或者相反,在ICH模型中显示出毒性作用。据推测,这可能是由于基因改造的MSCs分泌组中个别生长因子的比例失衡,单独来看,这些生长因子可能会在受损神经组织中导致不良影响,例如血脑屏障通透性增加(在促血管生成因子的影响下)或神经细胞凋亡(由于神经营养因子过量)。所获得的数据表明,MSC培养物的基因改造可以增强或改变其分泌组的治疗活性,这可用于创建有前景的生物药物来源。