Mendoza-Alatorre Maribel, Julian-Chávez Brenda, Solano-Ornelas Stephanie, Siqueiros-Cendón Tania Samanta, Torres-Castillo Jorge Ariel, Sinagawa-García Sugey Ramona, Abraham-Juárez María Jazmín, González-Barriga Carmen Daniela, Rascón-Cruz Quintín, Siañez-Estrada Luis Ignacio, Espinoza-Sánchez Edward Alexander
Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua C.P. 31125, Chihuahua, Mexico.
Laboratorio de Nanotoxicología y Genómica Funcional, Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Chihuahua, Mexico.
Insects. 2025 Jul 18;16(7):737. doi: 10.3390/insects16070737.
In recent years, agricultural crops have increasingly been attacked by more destructive insect pests, forcing modern farming to depend mainly on chemical insecticides. Although valuable, their widespread and intensive misuse has raised serious concerns about environmental and public health impacts. RNAi has been proposed as a safer alternative due to its high specificity, adaptability, and low ecological footprint. So far, dsRNA has proven effective in controlling various pest species, either through topical application or via genetically modified plants. Despite advances, large-scale implementation of RNAi remains challenging due to technical and biological hurdles that contribute to inconsistent performance. Key aspects such as dsRNA design, delivery techniques, and cellular uptake mechanisms still require refinement. Additionally, ensuring environmental stability, addressing biosafety concerns, and developing cost-effective production methods are essential for its practical application. In this review, we explore recent advances in the design and implementation of dsRNA, as well as the strategies that could support the successful integration of RNAi technology into pest management programs.
近年来,农作物越来越多地受到更具破坏性的害虫侵袭,迫使现代农业主要依赖化学杀虫剂。尽管化学杀虫剂很有价值,但它们的广泛和过度使用引发了对环境和公众健康影响的严重担忧。由于RNA干扰具有高特异性、适应性和低生态足迹,它已被提议作为一种更安全的替代方法。到目前为止,双链RNA已被证明在控制各种害虫物种方面有效,无论是通过局部应用还是通过转基因植物。尽管取得了进展,但由于导致性能不一致的技术和生物学障碍,RNA干扰的大规模实施仍然具有挑战性。双链RNA设计、递送技术和细胞摄取机制等关键方面仍需完善。此外,确保环境稳定性、解决生物安全问题以及开发具有成本效益的生产方法对于其实际应用至关重要。在这篇综述中,我们探讨了双链RNA设计和实施的最新进展,以及可以支持将RNA干扰技术成功整合到害虫管理计划中的策略。