Cioloca Holban Catalina, Tatarciuc Monica, Vitalariu Anca Mihaela, Vasluianu Roxana-Ionela, Antohe Magda, Diaconu Diana Antonela, Stamatin Ovidiu, Dima Ana Maria
Department of Dental Prosthesis Technology, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.
Department of Prosthodontics, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.
J Clin Med. 2025 Jul 8;14(14):4837. doi: 10.3390/jcm14144837.
: Digital prosthodontics increasingly utilize both additive (3D printing) and subtractive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), yet comprehensive comparisons remain limited. This scoping review evaluates their relative performance across prosthodontic applications. : Systematic searches (PubMed, Scopus, Web of Science, Embase, 2015-2025) identified 28 studies (27 in vitro, 1 retrospective). Data were extracted on accuracy, efficiency, materials, and outcomes. : CAD/CAM milling demonstrated superior accuracy for fixed prostheses, with marginal gaps for milled zirconia (123.89 ± 56.89 µm), comparable to optimized 3D-printed interim crowns (123.87 ± 67.42 µm, = 0.760). For removable prostheses, milled denture bases achieved a trueness of 65 ± 6 µm, while SLA-printed dentures post-processed at 40 °C for 30 min showed the lowest root mean square error (RMSE) (30 min/40 °C group). Three-dimensional printing excelled in material efficiency (<5% waste vs. milling > 30-40%) and complex geometries, such as hollow-pontic fixed dental prostheses (FDPs) (2.0 mm wall thickness reduced gaps by 33%). Build orientation (45° for crowns, 30-45° for veneers) and post-processing protocols significantly influenced accuracy. Milled resins exhibited superior color stability (ΔE00: 1.2 ± 0.3 vs. 3D-printed: 4.5 ± 1.1, < 0.05), while 3D-printed Co-Cr frameworks (SLM) showed marginal fits of 8.4 ± 3.2 µm, surpassing milling (130.3 ± 13.8 µm). Digital workflows reduced chairside time by 29% (154.31 ± 13.19 min vs. 218.00 ± 20.75 min). All methods met clinical thresholds (<120 µm gaps). : Milling remains preferred for high-precision fixed prostheses, while 3D printing offers advantages in material efficiency, complex designs, and removable applications. Critical gaps include long-term clinical data and standardized protocols. Future research should prioritize hybrid workflows, advanced materials, and AI-driven optimization to bridge technical and clinical gaps.
数字口腔修复学越来越多地同时使用增材(3D打印)和减材计算机辅助设计/计算机辅助制造(CAD/CAM)技术,但全面的比较仍然有限。本范围综述评估了它们在口腔修复应用中的相对性能。:系统检索(PubMed、Scopus、Web of Science、Embase,2015 - 2025年)确定了28项研究(27项体外研究,1项回顾性研究)。提取了关于准确性、效率、材料和结果的数据。:CAD/CAM铣削在固定修复体方面显示出更高的准确性,铣削氧化锆的边缘间隙为(123.89±56.89µm),与优化的3D打印临时冠(123.87±67.42µm,P = 0.760)相当。对于可摘修复体,铣削义齿基托的真实度为65±6µm,而在40°C后处理30分钟的SLA打印义齿显示出最低的均方根误差(RMSE)(40°C/30分钟组)。3D打印在材料效率(废料<5%,而铣削>30 - 40%)和复杂几何形状方面表现出色,如空心桥体固定义齿(FDPs)(壁厚2.0mm可使间隙减少33%)。构建方向(冠为45°,贴面为30 - 45°)和后处理方案显著影响准确性。铣削树脂表现出更好的颜色稳定性(ΔE00:1.2±0.3,而3D打印为:4.5±1.1,P<0.05),而3D打印的钴铬框架(SLM)显示边缘适合度为8.4±3.2µm,超过铣削(130.3±13.8µm)。数字工作流程将椅旁时间减少了29%(154.31±13.19分钟对218.00±20.75分钟)。所有方法均符合临床阈值(间隙<120µm)。:铣削仍然是高精度固定修复体的首选,而3D打印在材料效率、复杂设计和可摘应用方面具有优势。关键差距包括长期临床数据和标准化方案。未来的研究应优先考虑混合工作流程、先进材料和人工智能驱动的优化,以弥合技术和临床差距。