Bauer Leonard, Hadzhieva Zoya, Bazina Iva, Li Meng, Bider Faina, Vlahović Lucija, Kaňková Hana, Boccaccini Aldo R, Rogina Anamarija
University of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10001 Zagreb, Croatia.
Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
ACS Appl Bio Mater. 2025 Aug 18;8(8):7201-7215. doi: 10.1021/acsabm.5c00930. Epub 2025 Jul 28.
The application of divalent bioactive metal ions, such as Cu, Zn, and Mn, emerges as a growth factor-free approach for bone defect regeneration. Delivery of those ions can be achieved by organic or inorganic phases through desirable rapid or sustainable release in order to stimulate specific cell responses. In this work, bioactive ions were incorporated into both phases, chitosan (Cht), via chelation reactions, and mesoporous bioactive glass nanoparticles (MBGNs), by doping. The BG/Cht composites with undoped and Cu-, Zn-, or Mn-doped MBGNs were produced as spherical microparticles with a narrow size distribution and an average size of 42-45 μm via electrohydrodynamic atomization. Swelling studies showed enhanced water uptake in the complete cell culture medium with values between 2.5 and 3.1 compared to phosphate-buffered saline (2.2-2.5). Ion release experiments in phosphate-buffered saline revealed a pronounced release of silicon and calcium up to 7 days for all samples. A sustained release of manganese ions from the MnBG/Cht sample was detected for up to 14 days. A precipitated layer of calcium phosphates on all composites, except on the MnBG/Cht samples, confirmed the materials' bioactivity after 21 days in simulated body fluid. Indirect cytotoxicity tests indicated that the materials were generally nontoxic to human osteosarcoma (MG-63) cells at concentrations below 1 mg/mL. However, direct contact assays with MG-63 and human dermal fibroblast (HDFa) cells revealed concentration-dependent cytotoxic effects, particularly for MnBG/Cht microparticles at a concentration of 0.5 mg/mL. Vascular endothelial growth factor (VEGF) expression analysis on MG-63 and HDFa cells demonstrated that only a higher concentration of MnBG/Cht significantly enhanced the angiogenic response in MG-63 cells, likely due to the decreased cell viability and oxidative stress generated by the redox activity of Mn ions. Our results show that composite microparticles have good potential in the design of microparticulate systems with tailored properties through the combination of bioactive metal ions.
二价生物活性金属离子(如铜、锌和锰)的应用成为一种无生长因子的骨缺损再生方法。这些离子的递送可以通过有机或无机相实现,通过理想的快速或持续释放来刺激特定的细胞反应。在这项工作中,生物活性离子通过螯合反应被掺入壳聚糖(Cht)这一有机相,以及通过掺杂被掺入介孔生物活性玻璃纳米颗粒(MBGNs)这一无机相。通过电液动力雾化制备了含有未掺杂和铜、锌或锰掺杂的MBGNs的BG/Cht复合材料,其为球形微粒,尺寸分布窄,平均尺寸为42 - 45μm。溶胀研究表明,与磷酸盐缓冲盐水(2.2 - 2.5)相比,在完全细胞培养基中的吸水量增加,值在2.5至3.1之间。在磷酸盐缓冲盐水中的离子释放实验表明,所有样品在长达7天的时间内都有明显的硅和钙释放。从MnBG/Cht样品中检测到锰离子持续释放长达14天。除了MnBG/Cht样品外,所有复合材料上都有一层磷酸钙沉淀层,证实了材料在模拟体液中21天后的生物活性。间接细胞毒性测试表明,在浓度低于1mg/mL时,这些材料对人骨肉瘤(MG - 63)细胞一般无毒。然而,与MG - 63和人皮肤成纤维细胞(HDFa)的直接接触试验显示出浓度依赖性细胞毒性作用,特别是对于浓度为0.5mg/mL的MnBG/Cht微粒。对MG - 63和HDFa细胞的血管内皮生长因子(VEGF)表达分析表明,只有较高浓度的MnBG/Cht显著增强了MG - 63细胞中的血管生成反应,这可能是由于锰离子的氧化还原活性产生的细胞活力下降和氧化应激所致。我们的结果表明,通过生物活性金属离子的组合,复合微粒在设计具有定制性能的微粒系统方面具有良好的潜力。