Shahid Gul E Sehar, Ahmad Jameel, Warraich Chaudary Atif Raza, Ksibi Amel, Alsenan Shrooq, Arshad Arfan, Raza Rehan, Shaikh Zaffar Ahmed
Department of Artificial Intelligence, University of Management & Technology, Lahore, Pakistan.
Department of Computer Science, School of Systems and Technology, University of Management & Technology, Lahore, Pakistan.
PeerJ Comput Sci. 2025 Mar 31;11:e2787. doi: 10.7717/peerj-cs.2787. eCollection 2025.
Segmenting brain tumors is a critical task in medical imaging that relies on advanced deep-learning methods. However, effectively handling complex tumor regions requires more comprehensive and advanced strategies to overcome challenges such as computational complexity, the gradient vanishing problem, and variations in size and visual impact. To overcome these challenges, this research presents a novel and computationally efficient method termed lightweight Inception U-Net (LIU-Net) for the accurate brain tumor segmentation task. LIU-Net balances model complexity and computational load to provide consistent performance and uses Inception blocks to capture features at different scales, which makes it relatively lightweight. Its capability to efficiently and precisely segment brain tumors, especially in challenging-to-detect regions, distinguishes it from existing models. This Inception-style convolutional block assists the model in capturing multiscale features while preserving spatial information. Moreover, the proposed model utilizes a combination of Dice loss and Focal loss to handle the class imbalance issue. The proposed LIU-Net model was evaluated on the benchmark BraTS 2021 dataset, where it generates remarkable outcomes with a Dice score of 0.8121 for the enhancing tumor (ET) region, 0.8856 for the whole tumor (WT) region, and 0.8444 for the tumor core (TC) region on the test set. To evaluate the robustness of the proposed architecture, LIU-Net was cross-validated on an external cohort BraTS 2020 dataset. The proposed method obtained a Dice score of 0.8646 for the ET region, 0.9027 for the WT region, and 0.9092 for the TC region on the external cohort BraTS 2020 dataset. These results highlight the effectiveness of integrating the Inception blocks into the U-Net architecture, making it a promising candidate for medical image segmentation.
分割脑肿瘤是医学成像中的一项关键任务,它依赖于先进的深度学习方法。然而,有效处理复杂的肿瘤区域需要更全面、更先进的策略来克服诸如计算复杂性、梯度消失问题以及大小和视觉影响的变化等挑战。为了克服这些挑战,本研究提出了一种新颖且计算高效的方法,称为轻量级Inception U-Net(LIU-Net),用于准确的脑肿瘤分割任务。LIU-Net平衡了模型复杂性和计算负载以提供一致的性能,并使用Inception模块来捕获不同尺度的特征,这使其相对轻量级。它能够高效且精确地分割脑肿瘤,特别是在难以检测的区域,这使其与现有模型有所区别。这种Inception风格的卷积块有助于模型在保留空间信息的同时捕获多尺度特征。此外,所提出的模型利用Dice损失和焦点损失的组合来处理类别不平衡问题。所提出的LIU-Net模型在基准BraTS 2021数据集上进行了评估,在测试集上,它在增强肿瘤(ET)区域的Dice分数为0.8121,在整个肿瘤(WT)区域为0.8856,在肿瘤核心(TC)区域为0.8444,产生了显著的结果。为了评估所提出架构的鲁棒性,LIU-Net在外部队列BraTS 2020数据集上进行了交叉验证。在外部队列BraTS 2020数据集上,所提出的方法在ET区域的Dice分数为0.8646,在WT区域为0.9027,在TC区域为0.9092。这些结果突出了将Inception模块集成到U-Net架构中的有效性,使其成为医学图像分割的一个有前途的候选方法。