Suppr超能文献

用于癌症治疗的上转换纳米粒子对RNA和线粒体的精确光损伤

Precision photodamage of RNA and mitochondria for cancer therapy with upconversion nanoparticles.

作者信息

Cheng Shuwen, Chen Menghang, Wu Yihan, Liu Jinliang, Zhong Xiaoqin, Zhang Yong, Dou Qingqing

机构信息

School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.

Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, SAR, China.

出版信息

Mikrochim Acta. 2025 Jul 29;192(8):537. doi: 10.1007/s00604-025-07332-5.

Abstract

Photodynamic therapy (PDT) is an emerging approach for cancer treatment that circumvents the discomfort associated with surgical interventions; however, its therapeutic effectiveness remains constrained. In this study, an innovative nanoplatform is introduced that is designed to enhance the efficacy of PDT by specifically targeting RNA and mitochondria, along with providing real-time in vivo imaging capabilities. The nanoplatform is constructed from a multifunctional nanocomposite, UCNP@PEI-RB-furan (referred to as UPRf), integrates several critical components: upconversion nanoparticles (UCNPs) to facilitate light penetration into deep tissue, Rose Bengal (RB) to generate reactive oxygen species (ROS) including singlet oxygen (O) for cancer cell destruction, a furan moiety for RNA crosslinking in the presence of O, and polyethylenimine (PEI) for electrostatically binding to mitochondria. This design offers multiple benefits, including the absence of phototoxicity in sunlight since PDT is activated by near-infrared (NIR) light, significant cell destruction by targeting the energy-producing organelles-mitochondria, and disruption of cellular function through damage to cytoplasmic RNA. The findings show that the nanoplatform achieved remarkable cancer regression both in vitro and in vivo, outperforming non-targeting alternatives.

摘要

光动力疗法(PDT)是一种新兴的癌症治疗方法,可避免与手术干预相关的不适;然而,其治疗效果仍然受到限制。在本研究中,引入了一种创新的纳米平台,该平台旨在通过特异性靶向RNA和线粒体来提高PDT的疗效,并提供实时体内成像能力。该纳米平台由多功能纳米复合材料UCNP@PEI-RB-呋喃(简称UPRf)构建而成,整合了几个关键组件:上转换纳米颗粒(UCNPs)以促进光穿透深层组织,孟加拉玫瑰红(RB)以产生活性氧(ROS),包括用于癌细胞破坏的单线态氧(O),在O存在下用于RNA交联的呋喃部分,以及用于与线粒体静电结合的聚乙烯亚胺(PEI)。这种设计具有多种优点,包括由于PDT由近红外(NIR)光激活而在阳光下无光毒性,通过靶向产生能量的细胞器——线粒体实现显著的细胞破坏,以及通过损伤细胞质RNA破坏细胞功能。研究结果表明,该纳米平台在体外和体内均实现了显著的癌症消退,优于非靶向替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验