Xie Liangpeng, Jiang Linxuan, Xiao Mingxuan, Sheng Jiaowen, Li Xin, Zhang Chang
Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
Kingsoft AI Lab, Kingsoft Office, Jinshan Software Park, Zhuhai 519085, Guangdong, China.
Shock. 2025 Jul 25. doi: 10.1097/SHK.0000000000002680.
Hypocalcemia occurs frequently in intensive-care units (ICUs) and is independently associated with excess mortality. Conventional severity scores-such as APACHE II and SOFA-assign fixed weights to a limited set of variables and therefore fail to capture the nonlinear, high-dimensional physiology characteristic of hypocalcemic patients. Although machine-learning (ML) approaches can enhance risk stratification, no interpretable model tailored to this cohort has been available.
We harmonised de-identified data from MIMIC-III, MIMIC-IV and two Grade III Level A hospitals in China, generating a multicentre cohort of 13,979 adult ICU admissions with total serum calcium < 2.12 mmol L-1. MIMIC-IV records were randomly divided into a training set (n = 7,749) and an internal-validation set (n = 1,550). External validation employed MIMIC-III (n = 4,771) and the Chinese multicentre dataset (n = 209). Predictors were filtered with least-absolute-shrinkage-and-selection operator (LASSO) regression and applied to eight ML algorithms: logistic regression, k-nearest neighbors (KNN), support-vector machine, decision tree, random forest, artificial neural network, eXtreme Gradient Boosting (XGBoost) and LightGBM. Model discrimination, calibration and clinical utility were quantified using the area under the receiver-operating-characteristic curve (AUC), F1-score, sensitivity, specificity, calibration plots, decision-curve analysis (DCA) and clinical-impact curves (CIC). SHapley Additive exPlanations (SHAP) were used for interpretability, and the final model was deployed as a public web application.
LASSO retained 20 predictive variables; is_noninvasive_ventilator and hospital length of stay were the most influential in SHAP analysis. XGBoost provided the highest discrimination (AUC = 0.914; F1 = 0.844), surpassing logistic regression (AUC = 0.896; F1 = 0.829), LightGBM (AUC = 0.909; F1 = 0.816) and conventional ICU scores. Calibration curves, DCA and CIC confirmed consistent performance and superior net benefit across internal and external validation cohorts.
We present and externally validate an interpretable, high-performance ML model that predicts in-hospital mortality in hypocalcemic ICU patients more accurately than established scoring systems. The SHAP-enabled web interface provides real-time, patient-specific risk estimates, facilitating data-driven clinical decisions within the early, critical window of ICU care.
低钙血症在重症监护病房(ICU)中频繁发生,且与过高的死亡率独立相关。传统的严重程度评分,如急性生理与慢性健康状况评分系统II(APACHE II)和序贯器官衰竭评估(SOFA),对有限的一组变量赋予固定权重,因此无法捕捉低钙血症患者非线性、高维度的生理特征。尽管机器学习(ML)方法可以增强风险分层,但尚未有针对该队列的可解释模型。
我们整合了来自多中心重症医学信息数据库III(MIMIC-III)、多中心重症医学信息数据库IV(MIMIC-IV)以及中国两家三级甲等医院的去识别化数据,生成了一个包含13979例成年ICU入院患者且总血清钙<2.12 mmol/L的多中心队列。MIMIC-IV记录被随机分为训练集(n = 7749)和内部验证集(n = 1550)。外部验证采用MIMIC-III(n = 4771)和中国多中心数据集(n = 209)。预测变量通过最小绝对收缩和选择算子(LASSO)回归进行筛选,并应用于八种ML算法:逻辑回归、k近邻(KNN)、支持向量机、决策树、随机森林、人工神经网络、极端梯度提升(XGBoost)和LightGBM。使用受试者操作特征曲线下面积(AUC)、F1分数、敏感性、特异性、校准图、决策曲线分析(DCA)和临床影响曲线(CIC)对模型的区分度、校准度和临床实用性进行量化。使用夏普利值加法解释(SHAP)进行可解释性分析,最终模型被部署为一个公共网络应用程序。
LASSO保留了20个预测变量;无创通气和住院时间在SHAP分析中影响最大。XGBoost具有最高的区分度(AUC = 0.914;F1 = 0.844),超过了逻辑回归(AUC = 0.896;F1 = 0.829)、LightGBM(AUC = 0.909;F1 = 0.816)和传统的ICU评分。校准曲线、DCA和CIC证实了在内部和外部验证队列中一致的性能和更高的净效益。
我们提出并外部验证了一个可解释的、高性能的ML模型,该模型比既定的评分系统更准确地预测低钙血症ICU患者的院内死亡率。启用SHAP的网络界面提供实时、针对患者的风险估计,有助于在ICU护理的早期关键窗口内进行数据驱动的临床决策。