Suppr超能文献

一种以患者为中心的方法,用于开发和验证用于提取患者报告症状的自然语言处理模型。

A patient-centered approach to developing and validating a natural language processing model for extracting patient-reported symptoms.

作者信息

Watabe Satoshi, Yanagisawa Yuki, Sayama Kyoko, Yokoyama Sakura, Someya Mitsuhiro, Taniguchi Ryoo, Yada Shuntaro, Aramaki Eiji, Kizaki Hayato, Tsuchiya Masami, Imai Shungo, Hori Satoko

机构信息

Division of Drug Informatics, Keio University Faculty of Pharmacy, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.

Nakajima Pharmacy, 24-2-15, Kita 10-jo Nishi, Chuo-ku, Sapporo, Hokkaido, 060-0010, Japan.

出版信息

Sci Rep. 2025 Jul 29;15(1):27652. doi: 10.1038/s41598-025-12845-3.

Abstract

Patient-reported symptoms provide valuable insights into patient experiences and can enhance healthcare quality; however, effectively capturing them remains challenging. Although natural language processing (NLP) models have been developed to extract adverse events and symptoms from medical records written by healthcare professionals, limited studies have focused on models designed for patient-generated narratives. This study developed an NLP model to extract patient-reported symptoms from pharmaceutical care records and validated its effectiveness in analyzing diverse patient-generated narratives. The target dataset comprised "Subjective" sections of pharmaceutical care records created by community pharmacists for patients prescribed anticancer drugs. Two annotation guidelines were applied to develop robust ground-truth data, which was used to develop and evaluate a new transformer-based named entity recognition model. Model performance was compared with that of an existing tool for Japanese clinical texts and tested on external patient-generated blog data to evaluate generalizability. The newly developed BERT-CRF model significantly outperformed the existing model, achieving an F1 score > 0.8 on pharmaceutical care records and extracting > 98% of physical symptom entries from patient blogs, with a 20% improvement over the existing tool. These findings highlight the importance of fine-tuning models using patient-specific narrative data to capture nuanced and colloquial symptom expressions.

摘要

患者报告的症状能为患者体验提供有价值的见解,并可提高医疗质量;然而,有效获取这些症状仍具有挑战性。尽管已经开发了自然语言处理(NLP)模型来从医疗保健专业人员撰写的病历中提取不良事件和症状,但针对患者生成叙述设计的模型的研究却很有限。本研究开发了一种NLP模型,用于从药学监护记录中提取患者报告的症状,并验证了其在分析各种患者生成叙述中的有效性。目标数据集包括社区药剂师为开具抗癌药物的患者创建的药学监护记录的“主观”部分。应用了两条注释指南来开发可靠的基准数据,该数据用于开发和评估一种新的基于Transformer的命名实体识别模型。将模型性能与现有的日语临床文本工具进行比较,并在外部患者生成的博客数据上进行测试,以评估其通用性。新开发的BERT-CRF模型明显优于现有模型,在药学监护记录上的F1分数>0.8,并从患者博客中提取了>98%的身体症状条目,比现有工具提高了20%。这些发现凸显了使用患者特定叙述数据对模型进行微调以捕捉细微和口语化症状表达的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验