Lueghamer Oliver, Nimmrichter Stefan, Conrad-Billroth Clara, Juffmann Thomas, Prüfer Maximilian
Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria.
Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068, Siegen, Germany.
Sci Rep. 2025 Jul 29;15(1):27676. doi: 10.1038/s41598-025-13589-w.
Microscopy gives access to spatially resolved dynamics in different systems, from biological cells to cold atoms. A big challenge is maximizing the information per used probe particle to limit the damage to the probed system. We present a cavity-enhanced continuous-wave microscopy approach that provides enhanced signal-to-noise ratios at fixed damage compared to standard single-pass microscopy. Employing a self-imaging 4f cavity, we show contrast enhancement for controlled test samples as well as biological samples. For thick samples, the imaging cavity leads to a new form of dark-field microscopy, where the separation of scattered and unscattered light is based on optical path length. We theoretically show that enhanced signal, signal-to-noise, and signal-to-noise per damage are also retrieved when the cavity is not length-stabilized. Our results provide an approach to cavity-enhanced microscopy with non-length-stabilized cavities and might be used to enhance the performance of dispersive imaging of ultracold atoms.
显微镜技术能够获取从生物细胞到冷原子等不同系统中的空间分辨动力学信息。一个巨大的挑战是如何在每次使用的探测粒子中最大化信息,以限制对被探测系统的损伤。我们提出了一种腔增强连续波显微镜方法,与标准的单次通过显微镜相比,该方法在固定损伤情况下能提供更高的信噪比。通过使用自成像4f腔,我们展示了对可控测试样品以及生物样品的对比度增强。对于厚样品,成像腔导致了一种新型暗场显微镜,其中散射光和非散射光的分离基于光程长度。我们从理论上表明,当腔不稳定长度时,也能获得增强的信号、信噪比以及每损伤的信噪比。我们的结果提供了一种使用非长度稳定腔的腔增强显微镜方法,可能用于提高超冷原子色散成像的性能。