Juffmann Thomas, Klopfer Brannon B, Frankort Timmo L I, Haslinger Philipp, Kasevich Mark A
Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA.
Department of Physics, University of California-Berkeley, 366 Le Conte Hall MS 7300, Berkeley, California 94720, USA.
Nat Commun. 2016 Sep 27;7:12858. doi: 10.1038/ncomms12858.
Microscopy of biological specimens often requires low light levels to avoid damage. This yields images impaired by shot noise. An improved measurement accuracy at the Heisenberg limit can be achieved exploiting quantum correlations. If sample damage is the limiting resource, an equivalent limit can be reached by passing photons through a specimen multiple times sequentially. Here we use self-imaging cavities and employ a temporal post-selection scheme to present full-field multi-pass polarization and transmission micrographs with variance reductions of 4.4±0.8 dB (11.6±0.8 dB in a lossless setup) and 4.8±0.8 dB, respectively, compared with the single-pass shot-noise limit. If the accuracy is limited by the number of detected probe particles, our measurements show a variance reduction of 25.9±0.9 dB. The contrast enhancement capabilities in imaging and in diffraction studies are demonstrated with nanostructured samples and with embryonic kidney 293T cells. This approach to Heisenberg-limited microscopy does not rely on quantum state engineering.
对生物样本进行显微镜检查时,通常需要低光照水平以避免样本受损。这会产生受散粒噪声影响的图像。利用量子相关性可以实现海森堡极限下更高的测量精度。如果样本损伤是限制因素,那么通过让光子依次多次穿过样本,也能达到等效极限。在此,我们使用自成像腔并采用时间后选择方案,呈现全场多通道偏振和透射显微照片,与单通道散粒噪声极限相比,方差分别降低了4.4±0.8 dB(在无损设置下为11.6±0.8 dB)和4.8±0.8 dB。如果精度受检测到的探测粒子数量限制,我们的测量结果显示方差降低了25.9±0.9 dB。利用纳米结构样本和胚胎肾293T细胞展示了成像和衍射研究中的对比度增强能力。这种实现海森堡极限显微镜的方法不依赖于量子态工程。