Suppr超能文献

通过原子模拟解析量子点中的激子陷阱动力学和非辐射损失途径

Unraveling Exciton Trap Dynamics and Nonradiative Loss Pathways in Quantum Dots via Atomistic Simulations.

作者信息

Hou Bokang, Gatto Salvatore, Rudge Samuel L, Runeson Johan E, Thoss Michael, Rabani Eran

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, Freiburg 79104, Germany.

出版信息

ACS Nano. 2025 Aug 12;19(31):28602-28611. doi: 10.1021/acsnano.5c07897. Epub 2025 Jul 29.

Abstract

Surface defects in colloidal quantum dots are a major source of nonradiative losses, yet the microscopic mechanisms underlying exciton trapping and recombination remain elusive. Here, we develop a model Hamiltonian based on atomistic electronic calculations to investigate exciton dynamics in CdSe/CdS core/shell QDs containing a single hole trap introduced by an unpassivated sulfur atom. By systematically varying the defect depth and reorganization energy, we uncover how defect-induced excitonic states mediate energy relaxation pathways. Our simulations reveal that a single localized defect can induce a rich spectrum of excitonic states, leading to multiple dynamical regimes, from slow, energetically off-resonant trapping to fast, cascaded relaxation through in-gap defect states. Crucially, we quantify how defect-induced polaron shifts and exciton-phonon couplings govern the balance between efficient radiative emission and rapid nonradiative decay. These insights clarify the microscopic origin of defect-assisted loss channels and suggest pathways for tailoring QD optoelectronic properties via surface and defect engineering.

摘要

胶体量子点中的表面缺陷是非辐射损失的主要来源,然而,激子捕获和复合背后的微观机制仍然难以捉摸。在这里,我们基于原子电子计算开发了一个模型哈密顿量,以研究含有由未钝化硫原子引入的单空穴陷阱的CdSe/CdS核壳量子点中的激子动力学。通过系统地改变缺陷深度和重组能,我们揭示了缺陷诱导的激子态如何介导能量弛豫途径。我们的模拟表明,单个局域缺陷可以诱导出丰富的激子态谱,导致多种动力学机制,从缓慢的、能量失谐的捕获到通过带隙缺陷态的快速级联弛豫。至关重要的是,我们量化了缺陷诱导的极化子位移和激子-声子耦合如何控制有效辐射发射和快速非辐射衰变之间的平衡。这些见解阐明了缺陷辅助损失通道的微观起源,并提出了通过表面和缺陷工程来定制量子点光电特性的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验