Xie Xiaochang, Yang Ping, Jia Yuefei, Jia Yandong
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China.
Institute of Materials, Shanghai University, Shanghai 200444, China.
Materials (Basel). 2025 Jul 17;18(14):3356. doi: 10.3390/ma18143356.
Medium-entropy alloys (MEAs) have attracted significant attention due to their unique structure-property relationships. In this study, we examine the effects of lattice distortion on the mechanical properties of Nb-Ti-V-Zr MEAs, focusing on two alloy series: Nb(TiV)Zr and Nb(TiV)Zr (x = 1, 2, 3, 4 and 5). Experimental results show that the Nb(TiV)Zr r alloys exhibit greater atomic size mismatches and increased lattice distortion compared to the Nb(TiV)Zr alloys, leading to higher yield strengths via enhanced solid-solution strengthening. However, excessive lattice distortion does not ensure an optimal strength-ductility balance, as the alloys with the highest distortion demonstrate limited plasticity. Thus, moderate reduction in lattice distortion proves beneficial in achieving an excellent compromise between strength and ductility. These findings offer valuable guidance for leveraging lattice distortion in the design of high-strength, high-ductility, body-centered cubic (BCC) MEAs for extreme environments.
中熵合金(MEA)因其独特的结构-性能关系而备受关注。在本研究中,我们研究了晶格畸变对Nb-Ti-V-Zr中熵合金力学性能的影响,重点关注两个合金系列:Nb(TiV)Zr和Nb(TiV)Zr(x = 1、2、3、4和5)。实验结果表明,与Nb(TiV)Zr合金相比,Nb(TiV)Zr合金表现出更大的原子尺寸失配和增加的晶格畸变,通过增强固溶强化导致更高的屈服强度。然而,过度的晶格畸变并不能确保最佳的强度-延展性平衡,因为畸变最高的合金表现出有限的塑性。因此,适度降低晶格畸变被证明有利于在强度和延展性之间实现优异的折衷。这些发现为在设计用于极端环境的高强度、高延展性体心立方(BCC)中熵合金时利用晶格畸变提供了有价值的指导。