Ciurescu Sebastian, Cerbu Simona, Dima Ciprian Nicușor, Buciu Victor, Șerban Denis Mihai, Ilaș Diana Gabriela, Sas Ioan
Doctoral School in Medicine, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania.
Department of Obstetrics and Gynecology, Victor Babeş University of Medicine and Pharmacy, 300041 Timișoara, Romania.
Medicina (Kaunas). 2025 Jul 10;61(7):1245. doi: 10.3390/medicina61071245.
: The accuracy of breast cancer diagnosis depends on the concordance between imaging features and pathological findings. While BI-RADS (Breast Imaging Reporting and Data System) provides standardized risk stratification, its correlation with histologic grade and immunohistochemical markers remains underexplored. This study assessed the diagnostic performance of BI-RADS 3, 4, and 5 classifications and their association with tumor grade and markers such as ER, PR, HER2, and Ki-67. : In this prospective study, 67 women aged 33-82 years (mean 56.4) underwent both mammography and ultrasound. All lesions were biopsied using ultrasound-guided 14G core needles. Imaging characteristics (e.g., margins, echogenicity, calcifications), histopathological subtype, and immunohistochemical data were collected. Statistical methods included logistic regression, Chi-square tests, and Spearman's correlation to assess associations between BI-RADS, histology, and immunohistochemical markers. : BI-RADS 5 lesions showed a 91% malignancy rate. Evaluated features included spiculated margins, pleomorphic microcalcifications, and hypoechoic masses with posterior shadowing, and were correlated with histological and immunohistochemical results. Invasive tumors typically appeared as irregular, hypoechoic masses with posterior shadowing, while mucinous carcinomas mimicked benign features. Higher BI-RADS scores correlated significantly with increased Ki-67 index (ρ = 0.76, < 0.001). Logistic regression yielded an AUC of 0.877, with 93.8% sensitivity and 80.0% specificity. : BI-RADS scoring effectively predicts malignancy and correlates with tumor proliferative markers. Integrating imaging, histopathology, and molecular profiling enhances diagnostic precision and supports risk-adapted clinical management in breast oncology.
乳腺癌诊断的准确性取决于影像学特征与病理结果之间的一致性。虽然BI-RADS(乳腺影像报告和数据系统)提供了标准化的风险分层,但其与组织学分级和免疫组化标志物之间的相关性仍未得到充分研究。本研究评估了BI-RADS 3、4和5类别的诊断性能及其与肿瘤分级以及雌激素受体(ER)、孕激素受体(PR)、人表皮生长因子受体2(HER2)和Ki-67等标志物的关联。
在这项前瞻性研究中,67名年龄在33至82岁(平均56.4岁)的女性接受了乳腺X线摄影和超声检查。所有病变均采用超声引导下的14G粗针活检。收集了影像学特征(如边界、回声、钙化)、组织病理学亚型和免疫组化数据。统计方法包括逻辑回归、卡方检验和Spearman相关性分析,以评估BI-RADS、组织学和免疫组化标志物之间的关联。
BI-RADS 5类病变的恶性率为91%。评估的特征包括毛刺状边界、多形性微钙化以及伴有后方声影的低回声肿块,并且这些特征与组织学和免疫组化结果相关。浸润性肿瘤通常表现为不规则的、伴有后方声影的低回声肿块,而黏液癌则表现出类似良性的特征。较高的BI-RADS评分与Ki-67指数显著相关(ρ = 0.76,P < 0.001)。逻辑回归得出的曲线下面积(AUC)为0.877,敏感性为93.8%,特异性为80.0%。
BI-RADS评分有效地预测了恶性肿瘤,并与肿瘤增殖标志物相关。整合影像学、组织病理学和分子谱分析可提高诊断准确性,并支持乳腺肿瘤学中基于风险的临床管理。