Naqvi Syed Atif Hasan, Abbas Aqleem, Hasnain Ammarah, Bilal Zeshan, Hakim Fahad, Shabbir Muhammad, Amin Ahsan, Iqbal Muhammad Umer
Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan.
Department of Agriculture and Food Technology, Faculty of Life Sciences, Karakoram International University, Gilgit, 15100, Gilgit-Baltistan, Pakistan.
Arch Microbiol. 2025 Jul 11;207(9):192. doi: 10.1007/s00203-025-04392-2.
The study of fungal genetics has undergone transformative advancements in recent decades, profoundly reshaping our understanding of fungal diversity, evolution, and pathogenesis. This review synthesizes cutting-edge molecular techniques revolutionizing fungal diagnostics, with a focus on DNA fingerprinting, next-generation sequencing (NGS), and third-generation sequencing (TGS), alongside their applications in species identification, phylogenetic reconstruction, and disease management. We critically evaluated the utility of molecular markers such as the Internal Transcribed Spacer (ITS), Large Subunit (LSU), and protein-coding genes (e.g., RPB1, RPB2, TEF1-α), which have emerged as indispensable tools for resolving taxonomic ambiguities and cryptic species complexes. While ITS remains the gold standard for fungal barcoding due to its high interspecific variability, multi-locus strategies integrating loci like β-tubulin and CaM enhance resolution in challenging genera such as Aspergillus, Fusarium, and Penicillium. The review underscores the limitations of traditional morphology-based taxonomy, particularly its inability to address cryptic speciation or non-reproductive fungal phases. Advances in NGS platforms (e.g., Illumina, PacBio, Oxford Nanopore) have overcome these barriers, enabling high-throughput genomic analyses that reveal unprecedented fungal diversity in environmental and clinical samples. TGS technologies, with their long-read capabilities (> 10 kb), now facilitate the assembly of complex genomes, identification of structural variants, and exploration of horizontal gene transfer events, offering new insights into fungal adaptation and pathogenicity. Despite these breakthroughs, challenges persist in resolving intragenomic variation, reconciling gene tree discordance, and standardizing workflows for large-scale fungal population studies. The integration of multi-omics approaches (transcriptomics, proteomics, metabolomics) and machine learning algorithms promises to address these gaps, enabling predictive modeling of antifungal resistance and host-pathogen interactions. Collaborative efforts among mycologists, clinicians, and bioinformaticians are critical to harmonizing data sharing, refining diagnostic pipelines, and translating genomic insights into precision therapies. Fungal-related diseases pose escalating threats to global agriculture, healthcare, and ecosystem stability. Climate change further exacerbates pathogen spread and antifungal resistance, necessitating innovative management strategies. Emerging tools such as CRISPR-based diagnostics, portable sequencers (MinION), and synthetic biology platforms hold promise for real-time pathogen surveillance and engineered biocontrol solutions. By bridging genomic innovation with interdisciplinary collaboration, this review charts a roadmap for advancing fungal diagnostics, enhancing taxonomic clarity, and mitigating the socio-economic impacts of fungal diseases in an era of rapid environmental change.
近几十年来,真菌遗传学研究取得了变革性进展,深刻重塑了我们对真菌多样性、进化和发病机制的理解。本综述综合了革新真菌诊断的前沿分子技术,重点关注DNA指纹识别、下一代测序(NGS)和第三代测序(TGS),以及它们在物种鉴定、系统发育重建和疾病管理中的应用。我们批判性地评估了分子标记物的效用,如内部转录间隔区(ITS)、大亚基(LSU)和蛋白质编码基因(如RPB1、RPB2、TEF1-α),这些已成为解决分类学模糊性和隐秘物种复合体问题不可或缺的工具。虽然ITS因其种间高度变异性仍是真菌条形码的金标准,但整合β-微管蛋白和钙调蛋白等基因座的多位点策略可提高在曲霉属、镰刀菌属和青霉属等具有挑战性的属中的分辨率。该综述强调了传统基于形态学的分类法的局限性,尤其是其无法解决隐秘物种形成或非繁殖性真菌阶段的问题。NGS平台(如Illumina、PacBio、Oxford Nanopore)的进展克服了这些障碍,实现了高通量基因组分析,揭示了环境和临床样本中前所未有的真菌多样性。TGS技术凭借其长读长能力(>10 kb),现在有助于复杂基因组的组装、结构变异的识别以及水平基因转移事件的探索,为真菌适应性和致病性提供了新见解。尽管有这些突破,但在解决基因组内变异、协调基因树不一致以及大规模真菌群体研究的工作流程标准化方面仍存在挑战。多组学方法(转录组学、蛋白质组学、代谢组学)和机器学习算法的整合有望填补这些空白,实现抗真菌耐药性和宿主-病原体相互作用的预测建模。真菌学家、临床医生和生物信息学家之间的合作对于协调数据共享、完善诊断流程以及将基因组见解转化为精准治疗至关重要。真菌相关疾病对全球农业、医疗保健和生态系统稳定性构成日益严重的威胁。气候变化进一步加剧了病原体传播和抗真菌耐药性,需要创新的管理策略。基于CRISPR的诊断、便携式测序仪(MinION)和合成生物学平台等新兴工具有望实现实时病原体监测和工程化生物防治解决方案。通过将基因组创新与跨学科合作相结合,本综述绘制了一条路线图,以推进真菌诊断、提高分类学清晰度,并在快速环境变化的时代减轻真菌疾病的社会经济影响。