Suppr超能文献

癌症中的靶点映射:3D肿瘤蛋白质-蛋白质相互作用网络上的可配体结合蛋白口袋

Target Mapping in Cancer: Ligandable Protein Pockets on 3D OncoPPI Networks.

作者信息

Trisciuzzi Daniela, Nicolotti Orazio, Cruciani Gabriele, Menna Gabriele, Siragusa Lydia

机构信息

Department of Pharmacy, Pharmaceutical Sciences, Università Degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy.

Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 60123 Perugia, Italy.

出版信息

Pharmaceuticals (Basel). 2025 Jun 25;18(7):958. doi: 10.3390/ph18070958.

Abstract

Studying protein-protein interaction (PPI) networks is crucial in understanding cancer phenotypes and molecular mechanisms. Here, we focus on PPIs involved in 12 different types of cancer (oncoPPIs), highlighting those protein pockets serving as outposts to modulate protein functioning. To explore these cavities linked to the cancer phenotype changes, we built a comprehensive pocketome of 314 crystallographically solved oncoPPIs. Based on this experimental data, we identified and investigated all ligandable protein pockets by employing 3D geometric and energetic descriptors. These pockets were classified as suitable for designing new oncoPPI modulators or PROTACs. The ligand-bound crystallographic pockets were analyzed to compare their properties across cancer types. Finally, 3D oncoPPI networks were built for each cancer type to identify highly connected proteins acting as hubs. Combining interaction networks with structural pocket data helps identify cancer-relevant proteins and key interacting residues. Using this approach, we present clinical examples (e.g., S100A1, NRP1, CTNNB1, VCP) to show the therapeutic value of targeting ligandable 3D oncoPPIs. We also provide a publicly available reference dataset supporting future research. : Notably, this study offers a flexible framework for evaluating and prioritizing novel disease targets.

摘要

研究蛋白质-蛋白质相互作用(PPI)网络对于理解癌症表型和分子机制至关重要。在此,我们聚焦于涉及12种不同类型癌症的PPI(肿瘤PPI),突出那些作为调节蛋白质功能前哨的蛋白质口袋。为了探索这些与癌症表型变化相关的腔隙,我们构建了一个包含314个经晶体学解析的肿瘤PPI的综合口袋组。基于这些实验数据,我们通过采用三维几何和能量描述符来识别和研究所有可配体的蛋白质口袋。这些口袋被归类为适合设计新型肿瘤PPI调节剂或PROTAC。分析了配体结合的晶体学口袋,以比较它们在不同癌症类型中的性质。最后,为每种癌症类型构建了三维肿瘤PPI网络,以识别作为枢纽的高度连接的蛋白质。将相互作用网络与结构口袋数据相结合有助于识别与癌症相关的蛋白质和关键相互作用残基。利用这种方法,我们展示了临床实例(如S100A1、NRP1、CTNNB1、VCP),以说明靶向可配体的三维肿瘤PPI的治疗价值。我们还提供了一个公开可用的参考数据集,以支持未来的研究。值得注意的是,本研究为评估和优先考虑新型疾病靶点提供了一个灵活的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4248/12298929/98165a21d89a/pharmaceuticals-18-00958-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验