Suppr超能文献

一种用于动物步态分析的基于视觉的实时自适应跟随跑步机

A Real-Time Vision-Based Adaptive Follow Treadmill for Animal Gait Analysis.

作者信息

Li Guanghui, Komi Salif, Sorensen Jakob Fleng, Berg Rune W

机构信息

Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.

出版信息

Sensors (Basel). 2025 Jul 9;25(14):4289. doi: 10.3390/s25144289.

Abstract

Treadmills are a convenient tool to study animal gait and behavior. Traditional animal treadmill designs often entail preset speeds and therefore have reduced adaptability to animals' dynamic behavior, thus restricting the experimental scope. Fortunately, advancements in computer vision and automation allow circumvention of these limitations. Here, we introduce a series of real-time adaptive treadmill systems utilizing both marker-based visual fiducial systems (colored blocks or AprilTags) and marker-free (pre-trained models) tracking methods powered by advanced computer vision to track experimental animals. We demonstrate their real-time object recognition capabilities in specific tasks by conducting practical tests and highlight the performance of the marker-free method using an object detection machine learning algorithm (FOMO MobileNetV2 network), which shows high robustness and accuracy in detecting a moving rat compared to the marker-based method. The combination of this computer vision system together with treadmill control overcome the issues of traditional treadmills by enabling the adjustment of belt speed and direction based on animal movement.

摘要

跑步机是研究动物步态和行为的便捷工具。传统的动物跑步机设计通常具有预设速度,因此对动物动态行为的适应性降低,从而限制了实验范围。幸运的是,计算机视觉和自动化技术的进步使得能够规避这些限制。在此,我们介绍一系列实时自适应跑步机系统,该系统利用基于标记的视觉基准系统(彩色方块或AprilTags)和由先进计算机视觉驱动的无标记(预训练模型)跟踪方法来跟踪实验动物。我们通过实际测试展示了它们在特定任务中的实时目标识别能力,并使用目标检测机器学习算法(FOMO MobileNetV2网络)突出了无标记方法的性能,与基于标记的方法相比,该算法在检测移动大鼠时显示出高鲁棒性和准确性。这种计算机视觉系统与跑步机控制相结合,通过根据动物运动调整皮带速度和方向,克服了传统跑步机的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验