Suppr超能文献

检测动物接触——一种基于深度学习的猪检测与跟踪方法用于社交接触量化

Detecting Animal Contacts-A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts.

作者信息

Wutke Martin, Heinrich Felix, Das Pronaya Prosun, Lange Anita, Gentz Maria, Traulsen Imke, Warns Friederike K, Schmitt Armin Otto, Gültas Mehmet

机构信息

Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany.

Livestock Systems, Department of Animal Sciences, Georg-August University, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany.

出版信息

Sensors (Basel). 2021 Nov 12;21(22):7512. doi: 10.3390/s21227512.

Abstract

The identification of social interactions is of fundamental importance for animal behavioral studies, addressing numerous problems like investigating the influence of social hierarchical structures or the drivers of agonistic behavioral disorders. However, the majority of previous studies often rely on manual determination of the number and types of social encounters by direct observation which requires a large amount of personnel and economical efforts. To overcome this limitation and increase research efficiency and, thus, contribute to animal welfare in the long term, we propose in this study a framework for the automated identification of social contacts. In this framework, we apply a convolutional neural network (CNN) to detect the location and orientation of pigs within a video and track their movement trajectories over a period of time using a Kalman filter (KF) algorithm. Based on the tracking information, we automatically identify social contacts in the form of head-head and head-tail contacts. Moreover, by using the individual animal IDs, we construct a network of social contacts as the final output. We evaluated the performance of our framework based on two distinct test sets for pig detection and tracking. Consequently, we achieved a Sensitivity, Precision, and F1-score of 94.2%, 95.4%, and 95.1%, respectively, and a MOTA score of 94.4%. The findings of this study demonstrate the effectiveness of our keypoint-based tracking-by-detection strategy and can be applied to enhance animal monitoring systems.

摘要

社交互动的识别对于动物行为研究至关重要,它能解决诸多问题,如研究社会等级结构的影响或攻击性行为障碍的驱动因素。然而,以往的大多数研究通常依靠直接观察手动确定社交接触的数量和类型,这需要大量的人力和财力。为了克服这一局限性,提高研究效率,并从长远来看促进动物福利,我们在本研究中提出了一个用于自动识别社交接触的框架。在此框架中,我们应用卷积神经网络(CNN)来检测视频中猪的位置和方向,并使用卡尔曼滤波器(KF)算法跟踪它们在一段时间内的运动轨迹。基于跟踪信息,我们自动识别头对头和头对尾接触形式的社交接触。此外,通过使用个体动物ID,我们构建一个社交接触网络作为最终输出。我们基于两个不同的猪检测和跟踪测试集评估了我们框架的性能。结果,我们分别获得了94.2%、95.4%和95.1%的灵敏度、精度和F1分数,以及94.4%的MOTA分数。本研究结果证明了我们基于关键点的检测跟踪策略的有效性,可用于增强动物监测系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d036/8619108/9910db0d1eaf/sensors-21-07512-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验