Maklad Ahmed S, Alyanbaawi Ashraf, Farsi Mohammed, Ibrahim Hani M, Elmezain Mahmoud
College of Computer Science and Engineering, Taibah University, Yanbu 966144, Saudi Arabia.
Information Systems Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suif 62521, Egypt.
Sensors (Basel). 2025 Jul 10;25(14):4298. doi: 10.3390/s25144298.
The increasing global discovery of plant species presents both opportunities and challenges, particularly in distinguishing between beneficial and poisonous varieties. While computer vision techniques show promise for classifying plant species and predicting toxicity, the lack of comprehensive datasets including images, scientific names, descriptions, local names, and poisonous status complicates these predictions. In this paper, we propose an Explainable Deep Inherent Learning approach that leverages advanced computer vision techniques for effective plant species classification and poisonous status prediction. The proposed Deep Inherent Learning method was validated using different explanation techniques, and Explainable AI (XAI) was employed to clarify decision-making processes at both the local and global levels. Additionally, we provide visual information to enhance trust in the proposed method. To validate the efficacy of our approach, we present a case study involving 2500 images of 50 different plant species from the Arabian Peninsula, enriched with essential metadata. This research aims to reduce the incidence of poisoning from harmful plants, thereby benefiting individuals and society. Our experimental results demonstrate strong performance, with the XAI model achieving accuracy, Precision, Recall, and F1-Score of 0.94, 0.96, 0.96 and 0.97, respectively. By enhancing interpretability, our study fosters greater trust in AI-driven plant classification systems.
全球范围内植物物种发现数量的不断增加既带来了机遇,也带来了挑战,尤其是在区分有益品种和有毒品种方面。虽然计算机视觉技术在植物物种分类和毒性预测方面显示出了前景,但缺乏包括图像、学名、描述、当地名称和有毒状态在内的综合数据集,使得这些预测变得复杂。在本文中,我们提出了一种可解释的深度固有学习方法,该方法利用先进的计算机视觉技术进行有效的植物物种分类和有毒状态预测。所提出的深度固有学习方法使用不同的解释技术进行了验证,并采用可解释人工智能(XAI)在局部和全局层面阐明决策过程。此外,我们还提供视觉信息以增强对所提方法的信任。为了验证我们方法的有效性,我们展示了一个案例研究,该研究涉及来自阿拉伯半岛的50种不同植物物种的2500张图像,并丰富了基本元数据。这项研究旨在减少有害植物中毒事件的发生率,从而使个人和社会受益。我们的实验结果显示出强大的性能,XAI模型的准确率、精确率、召回率和F1分数分别达到0.94、0.96、0.96和0.97。通过提高可解释性,我们的研究增强了对人工智能驱动的植物分类系统的信任。