Suppr超能文献

通过具有高效局部注意力的改进YOLOv8姿态估计对羽毛球运动员进行增强姿态估计

Enhanced Pose Estimation for Badminton Players via Improved YOLOv8-Pose with Efficient Local Attention.

作者信息

Wu Yijian, Chen Zewen, Zhang Hongxing, Yang Yulin, Yi Weichao

机构信息

College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.

Metaverse and Artificial Intelligence Institute, Wenzhou University, Wenzhou 325000, China.

出版信息

Sensors (Basel). 2025 Jul 17;25(14):4446. doi: 10.3390/s25144446.

Abstract

With the rapid development of sports analytics and artificial intelligence, accurate human pose estimation in badminton is becoming increasingly important. However, challenges such as the lack of domain-specific datasets and the complexity of athletes' movements continue to hinder progress in this area. To address these issues, we propose an enhanced pose estimation framework tailored to badminton players, built upon an improved YOLOv8-Pose architecture. In particular, we introduce an efficient local attention (ELA) mechanism that effectively captures fine-grained spatial dependencies and contextual information, thereby significantly improving the keypoint localization accuracy and overall pose estimation performance. To support this study, we construct a dedicated badminton pose dataset comprising 4000 manually annotated samples, captured using a Microsoft Kinect v2 camera. The raw data undergo careful processing and refinement through a combination of depth-assisted annotation and visual inspection to ensure high-quality ground truth keypoints. Furthermore, we conduct an in-depth comparative analysis of multiple attention modules and their integration strategies within the network, offering generalizable insights to enhance pose estimation models in other sports domains. The experimental results show that the proposed ELA-enhanced YOLOv8-Pose model consistently achieves superior accuracy across multiple evaluation metrics, including the mean squared error (MSE), object keypoint similarity (OKS), and percentage of correct keypoints (PCK), highlighting its effectiveness and potential for broader applications in sports vision tasks.

摘要

随着体育分析和人工智能的快速发展,羽毛球运动中准确的人体姿态估计变得越来越重要。然而,诸如缺乏特定领域数据集以及运动员动作的复杂性等挑战,继续阻碍着该领域的进展。为了解决这些问题,我们提出了一种专门针对羽毛球运动员的增强型姿态估计框架,该框架基于改进的YOLOv8-Pose架构构建。具体而言,我们引入了一种高效局部注意力(ELA)机制,该机制能够有效捕捉细粒度的空间依赖性和上下文信息,从而显著提高关键点定位精度和整体姿态估计性能。为支持本研究,我们构建了一个专门的羽毛球姿态数据集,该数据集包含4000个使用微软Kinect v2相机采集的人工标注样本。原始数据通过深度辅助标注和视觉检查相结合的方式进行仔细处理和优化,以确保高质量的地面真值关键点。此外,我们对网络中的多个注意力模块及其集成策略进行了深入的比较分析,为增强其他体育领域的姿态估计模型提供了可推广的见解。实验结果表明,所提出的ELA增强型YOLOv8-Pose模型在包括均方误差(MSE)、目标关键点相似度(OKS)和正确关键点百分比(PCK)在内的多个评估指标上始终取得优异的精度,突出了其在体育视觉任务中更广泛应用的有效性和潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验