Zhang Xiaojuan, Jing Bo, Jiao Xiaoxuan, Yao Ruixu
College of Aeronautics Engineering, Air Force Engineering University, Xi'an 710051, China.
College of Mechanical Engineering, Xijing University, Xi'an 710123, China.
Sensors (Basel). 2025 Jul 18;25(14):4474. doi: 10.3390/s25144474.
The increasing deployment of photovoltaic (PV) systems necessitates robust fault detection mechanisms to ensure operational reliability and safety. Conventional approaches, however, struggle in complex industrial environments characterized by high noise, data incompleteness, and class imbalance. This study proposes an innovative Advanced CNN-BiLSTM architecture integrating multi-scale feature extraction with hierarchical attention to enhance PV fault detection. The proposed framework employs four parallel CNN branches with kernel sizes of 3, 7, 15, and 31 to capture temporal patterns across various time scales. These features are then integrated by an adaptive feature fusion network that utilizes multi-head attention. A two-layer bidirectional LSTM with temporal attention mechanism processes the fused features for final classification. Comprehensive evaluation on the GPVS-Faults dataset using a progressive difficulty validation framework demonstrates exceptional performance improvements. Under extreme industrial conditions, the proposed method achieves 83.25% accuracy, representing a substantial 119.48% relative improvement over baseline CNN-BiLSTM (37.93%). Ablation studies reveal that the multi-scale CNN contributes 28.0% of the total performance improvement, while adaptive feature fusion accounts for 22.0%. Furthermore, the proposed method demonstrates superior robustness under severe noise (σ = 0.20), high levels of missing data (15%), and significant outlier contamination (8%). These characteristics make the architecture highly suitable for real-world industrial deployment and establish a new paradigm for temporal feature fusion in renewable energy fault detection.
光伏(PV)系统部署的不断增加,需要强大的故障检测机制来确保运行可靠性和安全性。然而,传统方法在以高噪声、数据不完整和类别不平衡为特征的复杂工业环境中面临困难。本研究提出了一种创新的先进CNN-BiLSTM架构,将多尺度特征提取与分层注意力相结合,以增强光伏故障检测。所提出的框架采用四个内核大小分别为3、7、15和31的并行CNN分支,以捕捉不同时间尺度上的时间模式。然后,这些特征由一个利用多头注意力的自适应特征融合网络进行整合。一个带有时间注意力机制的两层双向LSTM对融合后的特征进行处理以进行最终分类。使用渐进难度验证框架对GPVS-Faults数据集进行的综合评估表明性能有显著提升。在极端工业条件下,所提出的方法实现了83.25%的准确率,相对于基线CNN-BiLSTM(37.93%)有119.48%的显著相对提升。消融研究表明,多尺度CNN对总性能提升的贡献为28.0%,而自适应特征融合占22.0%。此外,所提出的方法在严重噪声(σ = 0.20)、高比例缺失数据(15%)和大量异常值污染(8%)的情况下表现出卓越的鲁棒性。这些特性使该架构非常适合实际工业部署,并为可再生能源故障检测中的时间特征融合建立了新的范例。