Suppr超能文献

用于高光谱解混的空间通道多尺度Transformer网络

Spatial-Channel Multiscale Transformer Network for Hyperspectral Unmixing.

作者信息

Sun Haixin, Cao Qiuguang, Meng Fanlei, Xu Jingwen, Cheng Mengdi

机构信息

College of Electronic and Information Engineering, Changchun University, Changchun 130022, China.

出版信息

Sensors (Basel). 2025 Jul 19;25(14):4493. doi: 10.3390/s25144493.

Abstract

In recent years, deep learning (DL) has been demonstrated remarkable capabilities in hyperspectral unmixing (HU) due to its powerful feature representation ability. Convolutional neural networks (CNNs) are effective in capturing local spatial information, but limited in modeling long-range dependencies. In contrast, transformer architectures extract global contextual features via multi-head self-attention (MHSA) mechanisms. However, most existing transformer-based HU methods focus only on spatial or spectral modeling at a single scale, lacking a unified mechanism to jointly explore spatial and channel-wise dependencies. This limitation is particularly critical for multiscale contextual representation in complex scenes. To address these issues, this article proposes a novel Spatial-Channel Multiscale Transformer Network (SCMT-Net) for HU. Specifically, a compact feature projection (CFP) module is first used to extract shallow discriminative features. Then, a spatial multiscale transformer (SMT) and a channel multiscale transformer (CMT) are sequentially applied to model contextual relations across spatial dimensions and long-range dependencies among spectral channels. In addition, a multiscale multi-head self-attention (MMSA) module is designed to extract rich multiscale global contextual and channel information, enabling a balance between accuracy and efficiency. An efficient feed-forward network (E-FFN) is further introduced to enhance inter-channel information flow and fusion. Experiments conducted on three real hyperspectral datasets (Samson, Jasper and Apex) and one synthetic dataset showed that SCMT-Net consistently outperformed existing approaches in both abundance estimation and endmember extraction, demonstrating superior accuracy and robustness.

摘要

近年来,深度学习(DL)因其强大的特征表示能力,在高光谱解混(HU)中展现出卓越的性能。卷积神经网络(CNNs)在捕捉局部空间信息方面很有效,但在对长距离依赖进行建模时存在局限性。相比之下,Transformer架构通过多头自注意力(MHSA)机制提取全局上下文特征。然而,大多数现有的基于Transformer的HU方法仅专注于单尺度的空间或光谱建模,缺乏一种统一的机制来联合探索空间和通道维度上的依赖关系。这种限制对于复杂场景中的多尺度上下文表示尤为关键。为了解决这些问题,本文提出了一种用于HU的新型空间 - 通道多尺度Transformer网络(SCMT - Net)。具体而言,首先使用一个紧凑特征投影(CFP)模块来提取浅层判别特征。然后,依次应用空间多尺度Transformer(SMT)和通道多尺度Transformer(CMT)来对跨空间维度的上下文关系以及光谱通道之间的长距离依赖进行建模。此外,设计了一个多尺度多头自注意力(MMSA)模块来提取丰富的多尺度全局上下文和通道信息,从而在准确性和效率之间实现平衡。进一步引入了一个高效前馈网络(E - FFN)来增强通道间的信息流和融合。在三个真实高光谱数据集(Samson、Jasper和Apex)以及一个合成数据集上进行的实验表明,SCMT - Net在丰度估计和端元提取方面均持续优于现有方法,展现出卓越的准确性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/553e/12299682/22ef1999a73d/sensors-25-04493-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验