Suppr超能文献

利用无人机辅助哨兵-2影像估算高山草甸植被覆盖度

Alpine Meadow Fractional Vegetation Cover Estimation Using UAV-Aided Sentinel-2 Imagery.

作者信息

Du Kai, Shao Yi, Yao Naixin, Yu Hongyan, Ma Shaozhong, Mao Xufeng, Wang Litao, Wang Jianjun

机构信息

Qinghai Provincial Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China.

Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China.

出版信息

Sensors (Basel). 2025 Jul 20;25(14):4506. doi: 10.3390/s25144506.

Abstract

Fractional Vegetation Cover (FVC) is a crucial indicator describing vegetation conditions and provides essential data for ecosystem health assessments. However, due to the low and sparse vegetation in alpine meadows, it is challenging to obtain pure vegetation pixels from Sentinel-2 imagery, resulting in errors in the FVC estimation using traditional pixel dichotomy models. This study integrated Sentinel-2 imagery with unmanned aerial vehicle (UAV) data and utilized the pixel dichotomy model together with four machine learning algorithms, namely Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Deep Neural Network (DNN), to estimate FVC in an alpine meadow region. First, FVC was preliminarily estimated using the pixel dichotomy model combined with nine vegetation indices applied to Sentinel-2 imagery. The performance of these estimates was evaluated against reference FVC values derived from centimeter-level UAV data. Subsequently, four machine learning models were employed for an accurate FVC inversion, using the estimated FVC values and UAV-derived reference FVC as inputs, following feature importance ranking and model parameter optimization. The results showed that: (1) Machine learning algorithms based on Sentinel-2 and UAV imagery effectively improved the accuracy of FVC estimation in alpine meadows. The DNN-based FVC estimation performed best, with a coefficient of determination of 0.82 and a root mean square error (RMSE) of 0.09. (2) In vegetation coverage estimation based on the pixel dichotomy model, different vegetation indices demonstrated varying performances across areas with different FVC levels. The GNDVI-based FVC achieved a higher accuracy (RMSE = 0.08) in high-vegetation coverage areas (FVC > 0.7), while the NIRv-based FVC and the SR-based FVC performed better (RMSE = 0.10) in low-vegetation coverage areas (FVC < 0.4). The method provided in this study can significantly enhance FVC estimation accuracy with limited fieldwork, contributing to alpine meadow monitoring on the Qinghai-Tibet Plateau.

摘要

植被覆盖度(FVC)是描述植被状况的关键指标,为生态系统健康评估提供重要数据。然而,由于高寒草甸植被低矮稀疏,从哨兵 - 2影像中获取纯净植被像元具有挑战性,导致使用传统像元二分模型估算FVC时出现误差。本研究将哨兵 - 2影像与无人机(UAV)数据相结合,并利用像元二分模型以及随机森林(RF)、极端梯度提升(XGBoost)、轻量级梯度提升机(LightGBM)和深度神经网络(DNN)这四种机器学习算法,对高寒草甸区域的FVC进行估算。首先,使用结合了应用于哨兵 - 2影像的九个植被指数的像元二分模型初步估算FVC。根据从厘米级无人机数据得出的参考FVC值评估这些估算的性能。随后,采用四个机器学习模型进行精确的FVC反演,将估算的FVC值和无人机衍生的参考FVC作为输入,进行特征重要性排序和模型参数优化。结果表明:(1)基于哨兵 - 2和无人机影像的机器学习算法有效提高了高寒草甸FVC估算的准确性。基于DNN的FVC估算表现最佳,决定系数为0.82,均方根误差(RMSE)为0.09。(2)在基于像元二分模型的植被覆盖度估算中,不同植被指数在不同FVC水平区域表现各异。基于GNDVI的FVC在高植被覆盖区域(FVC > 0.7)具有较高准确性(RMSE = 0.08),而基于NIRv的FVC和基于SR的FVC在低植被覆盖区域(FVC < 0.4)表现更好(RMSE = 0.10)。本研究提供的方法能够在有限的野外工作情况下显著提高FVC估算准确性,有助于青藏高原高寒草甸监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5261/12299078/20cf0997145b/sensors-25-04506-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验