Suppr超能文献

基于改进三温度模型利用无人机热红外影像评估田间小尺度玉米蒸腾速率

The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model.

作者信息

Yang Xiaofei, Zhang Zhitao, Xu Qi, Dong Ning, Bai Xuqian, Liu Yanfu

机构信息

College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China.

Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China.

出版信息

Plants (Basel). 2025 Jul 17;14(14):2209. doi: 10.3390/plants14142209.

Abstract

Transpiration is the dominant process driving water loss in crops, significantly influencing their growth, development, and yield. Efficient monitoring of transpiration rate (Tr) is crucial for evaluating crop physiological status and optimizing water management strategies. The three-temperature (3T) model has potential for rapid estimation of transpiration rates, but its application to low-altitude remote sensing has not yet been further investigated. To evaluate the performance of 3T model based on land surface temperature (LST) and canopy temperature (T) in estimating transpiration rate, this study utilized an unmanned aerial vehicle (UAV) equipped with a thermal infrared (TIR) camera to capture TIR images of summer maize during the nodulation-irrigation stage under four different moisture treatments, from which LST was extracted. The Gaussian Hidden Markov Random Field (GHMRF) model was applied to segment the TIR images, facilitating the extraction of T. Finally, an improved 3T model incorporating fractional vegetation coverage (FVC) was proposed. The findings of the study demonstrate that: (1) The GHMRF model offers an effective approach for TIR image segmentation. The mechanism of thermal TIR segmentation implemented by the GHMRF model is explored. The results indicate that when the potential energy function parameter β value is 0.1, the optimal performance is provided. (2) The feasibility of utilizing UAV-based TIR remote sensing in conjunction with the 3T model for estimating Tr has been demonstrated, showing a significant correlation between the measured and the estimated transpiration rate (T-3T), derived from T data obtained through the segmentation and processing of TIR imagery. The correlation coefficients (r) were 0.946 in 2022 and 0.872 in 2023. (3) The improved 3T model has demonstrated its ability to enhance the estimation accuracy of crop Tr rapidly and effectively, exhibiting a robust correlation with T-3T. The correlation coefficients for the two observed years are 0.991 and 0.989, respectively, while the model maintains low RMSE of 0.756 mmol HO m s and 0.555 mmol HO m s for the respective years, indicating strong interannual stability.

摘要

蒸腾作用是驱动作物水分流失的主要过程,对作物的生长、发育和产量有显著影响。有效监测蒸腾速率(Tr)对于评估作物生理状态和优化水分管理策略至关重要。三温度(3T)模型具有快速估算蒸腾速率的潜力,但其在低海拔遥感中的应用尚未得到进一步研究。为了评估基于陆地表面温度(LST)和冠层温度(T)的3T模型在估算蒸腾速率方面的性能,本研究利用配备热红外(TIR)相机的无人机(UAV)在四种不同水分处理下的结瘤-灌溉阶段拍摄夏玉米的TIR图像,从中提取LST。应用高斯隐马尔可夫随机场(GHMRF)模型对TIR图像进行分割,便于提取T。最后,提出了一种结合植被覆盖度(FVC)的改进3T模型。研究结果表明:(1)GHMRF模型为TIR图像分割提供了一种有效方法。探讨了GHMRF模型实现热TIR分割的机制。结果表明,当势能函数参数β值为0.1时,性能最佳。(2)已证明利用基于无人机的TIR遥感结合3T模型估算Tr的可行性,通过对TIR图像进行分割和处理获得的T数据得出的实测蒸腾速率与估算蒸腾速率(T-3T)之间存在显著相关性。2022年相关系数(r)为0.946,2023年为0.872。(3)改进后的3T模型已证明能够快速有效地提高作物Tr的估算精度,与T-3T表现出很强的相关性。两个观测年份的相关系数分别为0.991和0.989,而该模型在各年份的RMSE分别保持在较低水平,为0.756 mmol H₂O m⁻² s⁻¹和0.555 mmol H₂O m⁻² s⁻¹,表明具有较强的年际稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c46f/12297977/bc0ab0d49835/plants-14-02209-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验