Alamos-Musre Said, Beltrán-Chacana Daniel, Moyano Juan, Márquez-Miranda Valeria, Duarte Yorley, Miranda-Rojas Sebastián, Olguín Yusser, Fuentes Juan A, González-Nilo Danilo, Otero María Carolina
Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370146, Chile.
Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile.
Pharmaceutics. 2025 Jul 18;17(7):927. doi: 10.3390/pharmaceutics17070927.
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells through various endocytic mechanisms, such as passive diffusion, clathrin-mediated endocytosis, and caveolae-mediated endocytosis, allowing them to traverse the cytoplasm and reach intracellular targets, such as the mitochondria or nucleus. Despite the significant challenge posed by the cytotoxicity of these nanoparticles, which is contingent upon the dendrimer size, surface charge, and generation, numerous strategies have been documented to modify the dendrimer surface using polyethylene glycol and other chemical groups to temporarily mitigate their cytotoxic effects. The potential of PAMAM dendrimers in cancer therapy and other biomedical applications is substantial, owing to their ability to enhance bioavailability, pharmacokinetics, and pharmacodynamics of active ingredients within the body. This underscores the necessity for further investigation into the optimization of internalization pathways and cytotoxicity of these nanoparticles. This review offers a comprehensive synthesis of the current literature on the diverse cellular internalization pathways of PAMAM dendrimers and their cargo molecules, emphasizing the mechanisms of entry, intracellular trafficking, and factors influencing these processes.
聚酰胺-胺(PAMAM)树枝状大分子以其功能化能力而著称,这种能力增强了它们所运输化合物的性质,使其成为具有广泛用途的多功能纳米颗粒,在生物医学领域有诸多应用,包括药物递送、疫苗递送和基因递送。这些树枝状大分子可通过多种内吞机制内化进入细胞,如被动扩散、网格蛋白介导的内吞作用和小窝蛋白介导的内吞作用,使它们能够穿过细胞质并到达细胞内靶点,如线粒体或细胞核。尽管这些纳米颗粒的细胞毒性带来了重大挑战,其细胞毒性取决于树枝状大分子的大小、表面电荷和代数,但已有许多策略被记录下来,可使用聚乙二醇和其他化学基团修饰树枝状大分子表面,以暂时减轻其细胞毒性作用。PAMAM树枝状大分子在癌症治疗和其他生物医学应用中的潜力巨大,这是因为它们能够提高体内活性成分的生物利用度、药代动力学和药效学。这突出了进一步研究优化这些纳米颗粒内化途径和细胞毒性的必要性。本综述全面综合了当前关于PAMAM树枝状大分子及其所载分子不同细胞内化途径的文献,强调了进入机制、细胞内运输以及影响这些过程的因素。