Jia Hui, Liu Ning, Zhang Lu, Li Pan, Meng Yanan, Yuan Wei, Li Haixiao, Tantai Dezeng, Qu Qing, Cao Zhiyan, Dong Jingao
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
Plants (Basel). 2025 Jul 9;14(14):2121. doi: 10.3390/plants14142121.
Fungal melanin plays a vital role in the survival, reproduction, infection, and environmental adaptation of plant pathogenic fungi. To develop innovative strategies for managing plant fungal diseases, comprehensive investigations into melanin are imperative. Such research is fundamental to elucidating the mechanistic basis of fungal pathogenesis and holds promise for the design of targeted interventions against melanin-mediated virulence determinants. This review systematically elaborates on the classification of fungal melanin in plant pathogens, provides a detailed analysis of the biosynthetic processes of 3,4-dihydroxyphenylalanine (DOPA) and 1,8-dihydroxynaphthalene melanin (DHN melanins), and reveals the catalytic functions and regulatory mechanisms of key enzymes within these pathways. Melanin modulates fungal virulence by influencing appressorial integrity and turgor pressure formation, thereby participating in the host infection process and the formation of overwintering sclerotia. Melanin provides stress resistance by protecting against extreme environmental factors, including UV radiation and high temperatures. It also has the capacity to absorb heavy metals, which increases pathogen survival under adverse conditions. Furthermore, the review also explores the mechanisms of action of melanin inhibitors that target plant pathogenic fungi, providing a theoretical foundation for developing efficient and environmentally friendly antifungal medications. The complex biosynthesis pathways and diverse biological functions of fungal melanin highlight its significant theoretical and practical importance for elucidating pathogenic mechanisms and formulating scientific control strategies.
真菌黑色素在植物病原真菌的生存、繁殖、感染及环境适应中起着至关重要的作用。为制定创新的植物真菌病害防治策略,对黑色素进行全面研究势在必行。此类研究对于阐明真菌致病机制的基础至关重要,有望针对黑色素介导的毒力决定因素设计靶向干预措施。本综述系统阐述了植物病原菌中真菌黑色素的分类,详细分析了3,4 - 二羟基苯丙氨酸(DOPA)和1,8 - 二羟基萘黑色素(DHN黑色素)的生物合成过程,并揭示了这些途径中关键酶的催化功能和调控机制。黑色素通过影响附着胞完整性和膨压形成来调节真菌毒力,从而参与宿主感染过程和越冬菌核的形成。黑色素通过抵御包括紫外线辐射和高温在内的极端环境因素提供抗逆性。它还具有吸收重金属的能力,这增加了病原菌在不利条件下的存活率。此外,本综述还探讨了针对植物病原真菌的黑色素抑制剂的作用机制,为开发高效环保的抗真菌药物提供了理论基础。真菌黑色素复杂的生物合成途径和多样的生物学功能凸显了其在阐明致病机制和制定科学防治策略方面的重要理论和实践意义。