Suppr超能文献

基于无人机使用PCERT-DETR模型自动检测水稻缺苗情况

UAV-Based Automatic Detection of Missing Rice Seedlings Using the PCERT-DETR Model.

作者信息

Gao Jiaxin, Tan Feng, Hou Zhaolong, Li Xiaohui, Feng Ailin, Li Jiaxin, Bi Feiyu

机构信息

College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China.

College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China.

出版信息

Plants (Basel). 2025 Jul 13;14(14):2156. doi: 10.3390/plants14142156.

Abstract

Due to the limitations of the sowing machine performance and rice seed germination rates, missing seedlings inevitably occur after rice is sown in large fields. This phenomenon has a direct impact on the rice yield. In the field environment, the existing methods for detecting missing seedlings based on unmanned aerial vehicle (UAV) remote sensing images often have unsatisfactory effects. Therefore, to enable the fast and accurate detection of missing rice seedlings and facilitate subsequent reseeding, this study proposes a UAV remote-sensing-based method for detecting missing rice seedlings in large fields. The proposed method uses an improved PCERT-DETR model to detect rice seedlings and missing seedlings in UAV remote sensing images of large fields. The experimental results show that PCERT-DETR achieves an optimal performance on the self-constructed dataset, with an mean average precision (mAP) of 81.2%, precision (P) of 82.8%, recall (R) of 78.3%, and F-score (F) of 80.5%. The model's parameter count is only 21.4 M and its FLOPs reach 66.6 G, meeting real-time detection requirements. Compared to the baseline network models, PCERT-DETR improves the P, R, F, and mAP by 15.0, 1.2, 8.5, and 6.8 percentage points, respectively. Furthermore, the performance evaluation experiments were carried out through ablation experiments, comparative detection model experiments and heat map visualization analysis, indicating that the model has a strong detection performance on the test set. The results confirm that the proposed model can accurately detect the number of missing rice seedlings. This study provides accurate information on the number of missing seedlings for subsequent reseeding operations, thus contributing to the improvement of precision farming practices.

摘要

由于播种机性能和水稻种子发芽率的限制,大面积稻田播种后不可避免地会出现缺苗现象。这种现象直接影响水稻产量。在田间环境中,现有的基于无人机(UAV)遥感图像检测缺苗的方法效果往往不尽人意。因此,为了能够快速准确地检测出水稻缺苗情况并便于后续补种,本研究提出了一种基于无人机遥感的大面积稻田水稻缺苗检测方法。该方法采用改进的PCERT-DETR模型对大面积稻田无人机遥感图像中的水稻秧苗和缺苗情况进行检测。实验结果表明,PCERT-DETR在自建数据集上取得了最优性能,平均精度均值(mAP)为81.2%,精度(P)为82.8%,召回率(R)为78.3%,F1分数(F)为80.5%。该模型的参数数量仅为21.4M,浮点运算次数达到66.6G,满足实时检测要求。与基线网络模型相比,PCERT-DETR的P、R、F和mAP分别提高了15.0、1.2、8.5和6.8个百分点。此外,通过消融实验、对比检测模型实验和热图可视化分析进行了性能评估实验,表明该模型在测试集上具有较强的检测性能。结果证实,所提出的模型能够准确检测出水稻缺苗数量。本研究为后续补种作业提供了准确的缺苗数量信息,从而有助于精准农业实践的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1bd/12298627/9054a087fc1d/plants-14-02156-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验