Suppr超能文献

利用基于无人机的图像估计和评估水稻簇的分布均匀性。

Estimating and evaluating the rice cluster distribution uniformity with UAV-based images.

机构信息

College of Agriculture, Hunan Agricultural University, Changsha, 410128, People's Republic of China.

College of Information and Intelligence Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China.

出版信息

Sci Rep. 2021 Nov 2;11(1):21442. doi: 10.1038/s41598-021-01044-5.

Abstract

The uniformity of the rice cluster distribution in the field affects population quality and the precise management of pesticides and fertilizers. However, there is no appropriate technical system for estimating and evaluating the uniformity at present. For that reason, a method based on unmanned aerial vehicle (UAV images) is proposed to estimate and evaluate the uniformity in this present study. This method includes rice cluster recognition and location determination based on the RGB color characteristics of the seedlings of aerial images, region segmentation considering the rice clusters based on Voronoi Diagram, and uniformity index definition for evaluating the rice cluster distribution based on the variation coefficient. The results indicate the rice cluster recognition attains a high precision, with the precision, accuracy, recall, and F1-score of rice cluster recognition reaching > 95%, 97%, 97%, 95%, and 96%, respectively. The rice cluster location error is small and obeys the gamma (3.00, 0.54) distribution (mean error, 1.62 cm). The uniformity index is reasonable for evaluating the rice cluster distribution verified via simulation. As a whole process, the estimating method is sufficiently high accuracy with relative error less than 0.01% over the manual labeling method. Therefore, this method based on UAV images is feasible, convenient, technologically advanced, inexpensive, and highly precision for the estimation and evaluation of the rice cluster distribution uniformity. However, the evaluation application indicates that there is much room for improvement in terms of the uniformity of mechanized paddy field transplanting in South China.

摘要

稻田中稻穗分布的均匀性会影响到作物的群体质量和农药化肥的精准管理。但是,目前还没有合适的技术系统来估计和评价均匀度。为此,本研究提出了一种基于无人机(UAV)图像的方法来估计和评价均匀度。该方法包括基于航空图像中幼苗的 RGB 颜色特征进行稻穗识别和定位、基于 Voronoi 图考虑稻穗的区域分割以及基于变异系数定义评价稻穗分布均匀度的均匀度指数。结果表明,稻穗识别精度高,稻穗识别的准确率、精确率、召回率和 F1 分数分别达到了>95%、97%、97%、95%和 96%。稻穗定位误差较小,服从伽马(3.00,0.54)分布(平均误差为 1.62 cm)。均匀度指数可用于模拟验证的稻穗分布均匀性评价,是合理的。总体而言,该估计方法的精度足够高,相对误差小于手动标记方法的 0.01%。因此,基于无人机图像的方法在估计和评价稻穗分布均匀度方面具有可行性、方便性、先进性、经济性和高精度的特点。然而,评估应用表明,华南地区机械化水稻移栽的均匀性还有很大的改进空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc1/8563992/eabec5f7f11e/41598_2021_1044_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验