Swarnakar Raktim
Physical Medicine and Rehabilitation, National Cancer Institute, Jhajjar Campus, All India Institute of Medical Sciences, New Delhi, IND.
Cureus. 2025 Jun 29;17(6):e86965. doi: 10.7759/cureus.86965. eCollection 2025 Jun.
Rehabilitation medicine is undergoing a significant transformation with the integration of precision-based approaches grounded in mathematical modeling. Traditional rehabilitation protocols, often generalized and uniform, fail to capture the diverse recovery patterns seen in patients with neurological and musculoskeletal injuries such as stroke, spinal cord injury, or traumatic brain injury. To address this variability, mathematical modeling can be used to predict functional recovery over time through a differential equation that incorporates therapy intensity, baseline function, individual recovery potential, and the natural recovery plateau. Key parameters include functional ability at time (F(t)), baseline function (B), therapy intensity (T), recovery potential (R), therapy efficacy (α), and recovery plateau rate (λ). These variables can be estimated using clinical data, validated prediction models, and modern machine learning algorithms trained on large datasets. Such models enable clinicians to forecast outcomes, individualize treatment plans, compare intervention strategies, and set realistic recovery goals. Rather than replacing clinical expertise, mathematical modeling enhances it by providing a quantitative framework to guide decision-making. As healthcare continues to evolve, these models can form the basis for real-time, adaptive rehabilitation strategies integrated with electronic health records and wearable technologies. From now on, precision rehabilitation supported by mathematical modeling offers a practical and evidence-based path toward more personalized and effective patient care.
随着基于数学建模的精准方法的整合,康复医学正在经历重大变革。传统的康复方案通常是通用且统一的,无法捕捉到中风、脊髓损伤或创伤性脑损伤等神经和肌肉骨骼损伤患者中出现的多样恢复模式。为了解决这种变异性问题,可以使用数学建模通过一个微分方程来预测随时间的功能恢复情况,该方程纳入了治疗强度、基线功能、个体恢复潜力和自然恢复平台期。关键参数包括时间(t)时的功能能力(F(t))、基线功能(B)、治疗强度(T)、恢复潜力(R)、治疗效果(\alpha)和恢复平台期速率(\lambda)。这些变量可以使用临床数据、经过验证的预测模型以及在大型数据集上训练的现代机器学习算法进行估计。此类模型使临床医生能够预测结果、个性化治疗方案、比较干预策略并设定现实的恢复目标。数学建模并非取代临床专业知识,而是通过提供一个定量框架来指导决策,从而增强临床专业知识。随着医疗保健的不断发展,这些模型可以成为与电子健康记录和可穿戴技术相结合的实时、自适应康复策略的基础。从现在开始,由数学建模支持的精准康复为实现更个性化和有效的患者护理提供了一条实用且基于证据的途径。