Lwin Eaindra, Gölz Mathis J, Lüttschwager Nils O B, Suhm Martin A, Käser Silvan, Andreichev Valerii, Brandes Magalie A, Meuwly Markus
Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
Department of Chemistry, University of Basel, Klingelbergstr. 80, CH-4056 Basel, Switzerland.
Phys Chem Chem Phys. 2025 Jul 30. doi: 10.1039/d5cp02019k.
Supersonic jet expansions allow to cool molecules and to form molecular complexes over a wide range of expansion conditions, ranging from nearly effusive expansions of the pure vapour to colder expansions in carrier gases. The resulting molecular species can be probed by infrared absorption and Raman scattering. They are not in thermal equilibrium, but one can assign effective average Boltzmann temperatures for rotational, selected vibrational and in low-barrier cases even conformational degrees of freedom. If the conformational energy difference is not known, one can at least follow the evolution of competing structures with expansion conditions and from this derive relative energy sequences. For aminoethanol and its -methylated variants, we explore rotational band contour analysis in OH stretching fundamentals, intensity analysis of sum and difference transitions with scaffold modes, relative intensities of isomers and the evolution of transient relative chirality to estimate the associated Boltzmann temperatures or energy sequences. The focus is on trends rather than on highly accurate numbers, which anyway depend on details like nozzle geometry or precise nozzle distance. These trends can be used for a better understanding of the vibrational spectra of other hydrogen-bonded systems. We show that the B3LYP functional is not able to describe the diastereomeric energy sequence for the dimethylaminoethanol dimer and that thermal shifts of infrared bands due to the weakening of hydrogen bonding depend strongly on the hydrogen bond strain. We also discuss high-barrier cases of conformational isomerism, which resist supersonic cooling and allow for low-temperature spectroscopy of metastable isomers. We assign the OH stretching spectra of the monohydrate of dimethylaminoethanol with an unusually strong water downshift. Finally, one of the successful machine learning-based models of the first HyDRA blind challenge is applied and improved for predicting the position of its water OH stretch wavenumber. The original model, based on computed harmonic wavenumbers for moderately strong H-bonds leads to a difference of 461 cm whereas improvements based on VPT2 calculations for the base model reduce this to 49 cm.
超音速喷流膨胀可使分子冷却,并在广泛的膨胀条件下形成分子复合物,范围从纯蒸汽的近泻流膨胀到载气中的更低温膨胀。所产生的分子物种可通过红外吸收和拉曼散射进行探测。它们并非处于热平衡状态,但对于转动、选定的振动以及在低势垒情况下甚至构象自由度,人们可以指定有效的平均玻尔兹曼温度。如果构象能差未知,人们至少可以追踪竞争结构随膨胀条件的演化,并据此得出相对能量序列。对于氨基乙醇及其甲基化变体,我们探索了OH伸缩基频中的转动带轮廓分析、与支架模式的和频与差频跃迁的强度分析、异构体的相对强度以及瞬态相对手性的演化,以估计相关的玻尔兹曼温度或能量序列。重点在于趋势而非高精度的数值,无论如何这些数值都取决于诸如喷嘴几何形状或精确喷嘴距离等细节。这些趋势可用于更好地理解其他氢键系统的振动光谱。我们表明,B3LYP泛函无法描述二甲基氨基乙醇二聚体的非对映体能量序列,并且由于氢键减弱导致的红外波段热位移强烈依赖于氢键应变。我们还讨论了构象异构的高势垒情况,这些情况能抵抗超音速冷却,并允许对亚稳异构体进行低温光谱研究。我们归属了具有异常大的水频移的二甲基氨基乙醇一水合物的OH伸缩光谱。最后,应用并改进了第一个HyDRA盲测挑战中一个成功的基于机器学习的模型,以预测其水OH伸缩波数的位置。基于中等强度氢键的计算谐波波数的原始模型导致相差461 cm,而基于基模的VPT2计算的改进将此差值减小到49 cm。