Suppr超能文献

迁移学习至 CCSD(T):从机器学习模型中获得准确的非谐频率。

Transfer Learning to CCSD(T): Accurate Anharmonic Frequencies from Machine Learning Models.

机构信息

Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.

出版信息

J Chem Theory Comput. 2021 Jun 8;17(6):3687-3699. doi: 10.1021/acs.jctc.1c00249. Epub 2021 May 7.

Abstract

The calculation of the anharmonic modes of small- to medium-sized molecules for assigning experimentally measured frequencies to the corresponding type of molecular motions is computationally challenging at sufficiently high levels of quantum chemical theory. Here, a practical and affordable way to calculate coupled-cluster quality anharmonic frequencies using second-order vibrational perturbation theory (VPT2) from machine-learned models is presented. The approach, referenced as "NN + VPT2", uses a high-dimensional neural network (PhysNet) to learn potential energy surfaces (PESs) at different levels of theory from which harmonic and VPT2 frequencies can be efficiently determined. The NN + VPT2 approach is applied to eight small- to medium-sized molecules (HCO, trans-HONO, HCOOH, CHOH, CHCHO, CHNO, CHCOOH, and CHCONH) and frequencies are reported from NN-learned models at the MP2/aug-cc-pVTZ, CCSD(T)/aug-cc-pVTZ, and CCSD(T)-F12/aug-cc-pVTZ-F12 levels of theory. For the largest molecules and at the highest levels of theory, transfer learning (TL) is used to determine the necessary full-dimensional, near-equilibrium PESs. Overall, NN + VPT2 yields anharmonic frequencies to within 20 cm of experimentally determined frequencies for close to 90% of the modes for the highest quality PES available and to within 10 cm for more than 60% of the modes. For the MP2 PESs only ∼60% of the NN + VPT2 frequencies were within 20 cm of the experiment, with outliers up to ∼150 cm, compared to the experiment. It is also demonstrated that the approach allows to provide correct assignments for strongly interacting modes such as the OH bending and the OH torsional modes in formic acid monomer and the CO-stretch and OH-bend mode in acetic acid.

摘要

计算中小分子的非谐模式,以便将实验测量的频率分配给相应类型的分子运动,这在足够高的量子化学理论水平上具有计算挑战性。在这里,提出了一种使用机器学习模型的二阶振动微扰理论 (VPT2) 从机器习得模型计算耦合簇质量非谐频率的实用且经济实惠的方法。该方法被称为“NN + VPT2”,它使用高维神经网络(PhysNet)从不同理论水平学习势能面(PES),从而可以有效地确定谐和 VPT2 频率。NN + VPT2 方法应用于八个中小分子(HCO、trans-HONO、HCOOH、CHOH、CHCHO、CHNO、CHCOOH 和 CHCONH),并报告了从 NN 习得模型在 MP2/aug-cc-pVTZ、CCSD(T)/aug-cc-pVTZ 和 CCSD(T)-F12/aug-cc-pVTZ-F12 理论水平的频率。对于最大的分子和最高的理论水平,使用转移学习 (TL) 来确定必要的全维、近平衡 PES。总体而言,NN + VPT2 产生的非谐频率与实验确定的频率相差约 20cm,对于最高质量 PES 中接近 90%的模式,以及超过 60%的模式相差约 10cm。对于 MP2 PES,只有约 60%的 NN + VPT2 频率与实验相差 20cm,与实验相比,离群值高达约 150cm。还证明该方法可以为强相互作用模式(例如甲酸单体中的 OH 弯曲和 OH 扭转模式以及乙酸中的 CO 拉伸和 OH 弯曲模式)提供正确的分配。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验