Suppr超能文献

术后谵妄的国际术前风险评估模型的开发和验证。

Development and validation of an international preoperative risk assessment model for postoperative delirium.

机构信息

PIPRA AG, Zurich 8005, Switzerland.

Institute of Data Analysis and Process Design, Zurich University of Applied Sciences, Winterthur 8400, Switzerland.

出版信息

Age Ageing. 2023 Jun 1;52(6). doi: 10.1093/ageing/afad086.

Abstract

BACKGROUND

Postoperative delirium (POD) is a frequent complication in older adults, characterised by disturbances in attention, awareness and cognition, and associated with prolonged hospitalisation, poor functional recovery, cognitive decline, long-term dementia and increased mortality. Early identification of patients at risk of POD can considerably aid prevention.

METHODS

We have developed a preoperative POD risk prediction algorithm using data from eight studies identified during a systematic review and providing individual-level data. Ten-fold cross-validation was used for predictor selection and internal validation of the final penalised logistic regression model. The external validation used data from university hospitals in Switzerland and Germany.

RESULTS

Development included 2,250 surgical (excluding cardiac and intracranial) patients 60 years of age or older, 444 of whom developed POD. The final model included age, body mass index, American Society of Anaesthesiologists (ASA) score, history of delirium, cognitive impairment, medications, optional C-reactive protein (CRP), surgical risk and whether the operation is a laparotomy/thoracotomy. At internal validation, the algorithm had an AUC of 0.80 (95% CI: 0.77-0.82) with CRP and 0.79 (95% CI: 0.77-0.82) without CRP. The external validation consisted of 359 patients, 87 of whom developed POD. The external validation yielded an AUC of 0.74 (95% CI: 0.68-0.80).

CONCLUSIONS

The algorithm is named PIPRA (Pre-Interventional Preventive Risk Assessment), has European conformity (ce) certification, is available at http://pipra.ch/ and is accepted for clinical use. It can be used to optimise patient care and prioritise interventions for vulnerable patients and presents an effective way to implement POD prevention strategies in clinical practice.

摘要

背景

术后谵妄(POD)是老年人中常见的并发症,其特征为注意力、意识和认知障碍,并与住院时间延长、功能恢复不良、认知能力下降、长期痴呆和死亡率增加有关。早期识别 POD 风险患者可以极大地帮助预防。

方法

我们使用系统评价中确定的八项研究的数据开发了一种术前 POD 风险预测算法,并提供了个体水平的数据。使用十折交叉验证进行预测因子选择和最终惩罚逻辑回归模型的内部验证。外部验证使用来自瑞士和德国大学医院的数据。

结果

开发包括 2250 名 60 岁或以上的外科(不包括心脏和颅内)患者,其中 444 名患者发生 POD。最终模型包括年龄、体重指数、美国麻醉医师协会(ASA)评分、谵妄史、认知障碍、药物、可选 C 反应蛋白(CRP)、手术风险以及手术是否为剖腹手术/开胸手术。在内部验证中,该算法的 AUC 为 0.80(95%CI:0.77-0.82),CRP 为 0.79(95%CI:0.77-0.82)。外部验证包括 359 名患者,其中 87 名患者发生 POD。外部验证的 AUC 为 0.74(95%CI:0.68-0.80)。

结论

该算法名为 PIPRA(术前预防性风险评估),具有欧洲符合性(CE)认证,可在 http://pipra.ch/ 上获得,已被接受用于临床使用。它可用于优化患者护理,并为脆弱患者提供干预措施,为在临床实践中实施 POD 预防策略提供了一种有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d056/10250022/51dbcbbbf0d4/afad086ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验