Suppr超能文献

基于扩散后验采样的锥束CT关节重建与散射估计

Joint Reconstruction and Scatter Estimation in Cone-beam CT using Diffusion Posterior Sampling.

作者信息

Lorenzon Altea, Jiang Xiao, Gang Grace J, Stayman J Webster

机构信息

Johns Hopkins University, Biomedical Engineering, Baltimore, MD.

University of Pennsylvania, Radiology, Philadelphia, PA.

出版信息

Proc SPIE Int Soc Opt Eng. 2025 Feb;13405. doi: 10.1117/12.3047684. Epub 2025 Apr 8.

Abstract

X-ray scatter degrades image quality in computed tomography, particularly in cone-beam CT due to wide cone angles. While mono-energetic CT scatter correction is well-studied, spectral CT imaging presents additional challenges due to its sensitivity to unmodeled biases in material decomposition and density estimation. This work presents a joint estimation approach that simultaneously estimates scatter and material densities by integrating the scatter component into a spectral CT forward model. Using Diffusion Posterior Sampling method, we leverage the combination of prior knowledge from large dataset training and the physical model for joint density and scatter estimation. Tested on simulated and phantom data, our method significantly reduce artifacts associated with unestimated scatter, improving spectral CT image quality.

摘要

在计算机断层扫描中,X射线散射会降低图像质量,尤其是在锥束CT中,由于锥角较大,这种情况更为明显。虽然单能CT散射校正已得到充分研究,但光谱CT成像由于其对材料分解和密度估计中未建模偏差的敏感性而带来了额外的挑战。这项工作提出了一种联合估计方法,通过将散射分量整合到光谱CT正向模型中,同时估计散射和材料密度。使用扩散后验采样方法,我们利用来自大数据集训练的先验知识与物理模型的结合,进行联合密度和散射估计。通过对模拟数据和体模数据的测试,我们的方法显著减少了与未估计散射相关的伪影,提高了光谱CT图像质量。

相似文献

6

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验